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Introduction

Most of us recognize "stylish” code when we see it, even though we are unable to say, in
general, what good style is, or even whether there is one way to achieve it. Stylish programming
shows the author’s concern to write code that is transparent, consistent, direct, and readable. The

care taken to make code stylish is one aspect of writing "good code": programs which are small,
fast, and extensible.

This document -- a collection of remarks, observations, advice, rules, and models -- is
intended to be the nucleus for a proper manual of K style. My hope is that K programmers will
find the project sufficiently interesting to think through the consequences of their current practices
and try to articulate the principles on which those practices are based.

I'have not sought to group the material under fixed chapter headings: in my opinion, that
would be premature. Instead, it is just one remark after another.

Kernighan and Plauger, in their classic work on the elements of programming style, orga-
nize issues of style under seven headings: expression, control structure, program structure, input/
output, common blunders, efficiency, and documentation.

In the 1970’s, addressing an audience of mainframe Fortran programmers, this way of dis-
secting the components of programming style had much to recommend it. For us, the emphasis is
distributed differently. Some wholly new problems have arisen, and some, which once appeared
central to the business of programming, now seem to be artifacts of the languages then used. As
examples of the first class, consider: client-server interaction, GUI control, timing problems, and
programming with arrays and lists. And as examples of the second, recall how much mental
effort was expended on the proper way to process files, write loops, and branch within a program.

In the final part of this paper, I reprint (with commentary) the complete set of style rules
from Kernighan and Plauger. In a later version, I will include a summary of whatever rules sur-
vive winnowing by the K programming community.
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K maxims

Style improves with knowledge of the language. The more K you know, the less code
you will need to write. K has been designed to simplify many of the tasks routinely required in
writing distributed event-driven applications. Stay alert for code that feels "wrong". Expect K to
provide a simple solution to what seems like a simple problem.

Program with, and not against, the grain of the language. For example, K provides
two notations for constructing a list:

1 2.2 3 / real vector
(1;2.2;3) / list of integers and reals

Vector notation is used to create structures of atoms of the same type. List notation is more gen-
eral, and can be used to create lists whose elements are arbitrary K data. Vector notation requires
less typing. Vectors have the most efficient form of storage. And vectors compute faster than
general lists. K nudges you in the direction of efficiency by making efficient structures easier to
create than inefficient ones. Seek to apply this principle to your own designs.

Seek opportunities to throw away code. A fact to bear in mind is that all of K is con-
tained in 1200 lines of C code. That figure encompasses the language as well as all the code for
interprocess communications (IPC), windows (GUID), object-file management (database), and

operating system interaction. K’s freedom from bugs is not unrelated to the high degree of com-
pression achieved in the source code.
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Names

Names should be easy to type. That is, short, and containing no, or only a very few,
shifted characters.

The Great Divide in K is between global and local variables. Only global variables can be
on the screen. Only globals can have attributes such as assignment triggers and dependency defi-
nitions. Global variables contain the persistent data, programs, and attributes of your application.

Although every piece of named K data is a variable, I will reserve this term for variables
whose datatype is not functional. Function-valued variables I will call "functions", leaving con-
text to sort out whether I am referring to the name, to the variable, or to its data.

In K, we use dictionaries in two ways: as name-spaces for functions and variables, and as
symbolically-indexed structured data. Official K calls global dictionaries "directories”, but I want
to reserve this term for dictionaries used as name-spaces. For example,

\d stat
avg: { (+/x)%#x}

var:{avgl[_sqgr x]-_sqr avg x}
std: {_sqrt var x}

Directory names should be as short as possible, in order to minimize the length of absolute paths.

I'll use the term "dictionary” for local dictionary-valued variables, and for global dictio-
naries when used as structured data. For example,

Bond:.+(‘tick‘coup'mat; (‘xyz;9.2;19990815))
Attribute variables are always global. K will not even parse the following function:
£:1
v..att:10

3

Since an attribute dictionary cannot be local, there is never any ambiguity about whether a is glo-
bal in

X..y.a

Therefore, we will not require that it be named to look like a global variable. Typically, an

attribute is replicated many times on the K tree, so naming it like a local will help reinforce the
idea that attributes are "private” to their objects.
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Conventions for names

The following list of naming conventions are designed to help you write intelligible, com-
pact code.

Directories begin with a lower-case letter.
Global variables begin with an upper-case letter.
Global constants are all upper-case.

Global functions begin with a lower-case letter, and contain at least three
characters.

Local variables begin with a lower-case letter, and contain one or two
characters.

Local functions begin with a lower-case letter, and contain exactly two
characters.

If an attribute begins with a lower-case letter, it must be at least three
characters long (to avoid potential clashes with system attributes).

Variables and functions in an attribute dictionary follow the rules for locals.

The letters x, y, and z are used exclusively for the first, second, and third
arguments to a function.
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Sample names

Global variables:

Global:10 20 30
NUM:"0123456789"

A global function:
Alb: { (+/&\x=" ")_ x}
A directory:

\d .my.u
ss5:{&0<#:’x _ss\:y}

A table with three fields:

Bonds[‘Tick‘Coup‘Mat] : (‘abc‘def‘ghi

Local variables:

foo: {
f:*x
r:1_ x

A local function:

goo: {
db:_dV[; " ll]

Entries in an attribute dictionary:

X..att.v:‘one‘two
X..att.eq: {x=y)}

9.4 10.2 6.5
19990815 19991201 20010101)
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Names_with_underscores

Use of the underscore character as a separator in multipart names should be avoided, since

this will interfere with the commonly used K verb written "_". Phrases such as the following are
difficult to read:

a_b c_d e f g

If the result is legible, avoid separators altogether:
a:ab _ cd _ efg
If you must distinguish the parts of a name, do so by shifting case:

aNameWithParts

The only context in which the underscore should occur as part of a name is where that

name has its origin outside of K; for example, if you are reading a Sybase table into K, and that
table contains names with underscores.
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NamesWithIntermittentUpperCase

Long descriptive names are almost always less readable than short ones. Consider the fol-
lowing sequence of ever-shorter names:

deleteLeadingBlanks
deleadBlns
dlb

The first variant is clearly the most meaningful: it conveys unambiguously the effect of

the function. The last is completely cryptic: find the documentation, or read the comment for the
line in which the function occurs.

Some programmers think that variant 2 is a good compromise: abbreviate down to just the
point where meaning starts to evaporate. (No question: this function deflates lead balloons).

Now, compare the following two lines:

newString:deleteLeadinBlanks'oldstrings
n:dlb’os / delet leading blanks from old strings

Which is easier to read?
Which is easier to understand?
Which is easier to type?
Which line contains the typo?

Long names makes it hard to see syntactic structure, which contributes as importantly to
the meaning of an expression as does the "meaning"” of a single function or an individual piece of
data. Long names also make it hard to see typos, since any twelve-character name looks much

like itself minus one letter (which is why proof-readers get paid -- say, did you find both typos in
the last example?).

If it’s important, you’ll type it a lot.
If you type it a lot, it should be short.
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Prevention of cruelty to vowels

Some programmers try to reduce typing and keep their code descriptive by purging all or

most vowels from long names, together with those consonants which seem redundant. For exam-
ple, the path

slstrk.posn.Tbl.NwBlnc
is almost certainly the result of performing a vowelectomy on
salestrack.position.Table.NewBalance

37 characters worth of name reduced to 23: 35% shorter, without loss of meaning. How could
this fail to be a Good Thing?

While the first name is shorter, it is definitely harder to type than the unabbreviated form.
Convince yourself of this by typing both names from memory four or five times at normal typing

speed. The chances are good that you will mistype the first name more often than the second.
That fact alone should warn us off the practice.

Use names made of either a single letter, a single syllable, or the first
letter of each word that describes the object.

For example:
st .pos.Tab.New
Typing accuracy as well as typing speed is at stake here. Sometimes we are actually com-
pelled to work together face-to-face, in which case we rely on speech rather than email to convey
information. We should not spend a lot of time having to explain how things are spelled, or which

letters in a name are upper-case, or which vowels didn’t get dropped and which consonants did.

Practice the following typing instructions with a friend:

"slstrkdotposndotcapital t bldot capital n e w capital bln c"
"salestrack dot position dot capital t table dot new capital b balance"
"s t dot pos dot capital t tab dot capital n new"

A name that is easy to pronounce is easy to remember and easy to type.
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Defaulting the argument list
Functions of zero, one, two, and three arguments:

zero: {a+b}
one: {x+10}
two: {x+y}
three: {x+y%z}

Be consistent in your use of x, y, and z to mean the first, second, and third arguments to a
function. Even if you elect not to use the default pattern provided by K, avoid using these letters
as local variables, or as arguments occupying other positions in the argument list. For example:

ugh: {[y;x]

urk: {[a;b]
x:a+b

.
H
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Use of braces

A function containing one statement which returns a result:
foo: {x+y)}
A function containing many statements which returns a result:
foo:{
as*x
b:*|x

a+b}

A multi-line function which does not return a result should always end with an isolated
brace:

foo:({
sSum: :x+y
Prod: :x*y

}

and not a semicolon:
foo: {
Sum: :xX+y

Prod: :x*y; )}

A function with one line which does not return a result can be written on a single line,
using a semicolon:

foo:{Sum: :x+y;}
but consistent use of the isolated brace to mean "no result" suggests we write:

foo:
Sum: :x+y

}
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Indentation

Indent no more than two spaces within a function:

foo: {
a:x+y

Similarly, within control statements:

if[v=_n
vi.()]

do[#x
a: !'#x
b:+/a]

while[i<5
a:f[b;i]
i+:1]

"Case" statements may pair test and action expressions:

/ if v>0 increment v
/ if v<0 decrement v
/ if v=0 v

r::[v>0;v+l
v<0;v-1
vl

Align lists and symbol-value pairs:

L:(1 23 45
‘one‘two'‘three*four‘five)

D:.+((‘one;1)
(‘two;2)
(‘three;3)
(*four;4))

Single-space indentation is acceptable:

foo: {
a:x+y
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Spaced-out code

K requires spaces in certain contexts and disallows them in others. The rules are simple,
and are spelled out in the Syntax chapter of the K language manual. Otherwise, you are free to
deploy whitespace in the service of readability.

Some programmers favor whitespace around all primitives and punctuation:

quotel : { { x | -1 ! X} @ { ~x =y }\ "'" = x }
Some use whitespace only around primitives:

quote2 : {{x | -1 ! x} @ {~ x = y}\ "' = x}
Others avoid cosmetic whitespace altogether:

quote3: {{x|-1!x}@{~x=y}\"’"=x}

A practice we countenance allocates whitespace grudgingly, using blanks to nudge the
eye:

quoted: {{x|-1Ix} @ {~x=y}\ "/v=x)}

Advocates of the last approach argue that it is easier to see the structure of a complex
expression when it is presented in dense form:

f e@g\ z

The practice we recommend accepts a single blank only following the statement separator
(semicolon):

a:b+c; d:e-f
Otherwise, use no whitespace, or

Only as much whitespace as makes syntactic structure salient.
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Parentheses

Avoid unnecessary parentheses. The grammar of K is simple, and there is no prece-
dence order for the primitives. For example, the expression to add a to the product of b and e,

a+b*c
should not be written

a+ (b*c)

Redundant parentheses are visual red herrings. Although extra parentheses are useful as
training wheels, most K programmers eventually internalize the preferred method of reading K,

which is left-to-right. To encounter a parenthesized expression is to assume that the parentheses
are necessary.
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Null statements

Since newline acts as a line-separator equivalent to semicolon, ending a line with both
semicolon and newline creates a null statement in your function. The first line of the following
function contains two statements: an assignment of a, followed by a null statement.

foo:
asx+y;

Newline is also a separator for the parts of a list:

a:(‘one;1)
b: (‘one
1)
a~b
1

Avoid unnecessary semicolons.

Page 14



How long is a line?

Ideally, a physical line of code contains exactly one K statement, and a K statement
encodes exactly one thought.

Some thoughts are too large or complex to represent in a single readable K statement.
Some thoughts are too small or trivial to justify the expenditure of a whole physical line.

An example of a line which contains several K statements, each of which encodes a small
piece of a single thought:

asx 0; b:x 1; ¢:x 2; d:x 3; e:x 4

(Observe how blanks are used after each semicolon to achieve visual separation. This is legiti-
mate, since whitespace should help us see computational structure. Not so in

v:m[a; b; ]
where the spaces create a visual obstacle.)

Sometimes a thought consists of a simple operation on parts whose construction is com-
plicated:

res(eoex 0.0 1o eeeX 200X 3...)

where the dots stand for complicated calculations on the parts of x. If the calculations are mutu-
ally independent, break the construction of r into a set of preliminary steps:

ds...x 3...
Ci...X 2...
b:...x 1...
at...x 0...
r:(a;b;c;d)

A good rule of thumb is that a line should consist of no more than 50 characters, including
the initial spaces. This leaves room for 40 or 50 characters’ worth of comment.

If your function looks tall and skinny, see whether you’re breaking ideas up into pieces

which are too small. If your function looks short and fat, see whether you’re trying to express
more than one idea on each line.
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Internal assignment

Internal assignments can make code hard to read, especially if there’s a lot of it. For
example, in the following line

iee(k>vey)a(k:!i8)<*(1+y)_ v,s:#n

there are internal assignments of k and s.

Internal assignments should never span lines. In the example above, k and s should be

temporary assignments on the way to computing i. If K had a "where" clause, we would write
this differently:

i:&(k>vey)&k<*(1l+y)_ v,s where k:!s where s:#n

The aim of this line is to construct i. Rather than compute #n three times and 1 #n twice, we snarf
these values into temporaries the first time they are computed.

If k and s are to be used on subsequent lines, they should be broken out as explicit assign-
ments:

s:#n
k:!s
i:&(k>vey)&k<*(l+y) v,s

Now the reader can scan the left edge of the function text and find all non-temporary
assignments.

Test your code by mentally drawing arrows from each assignment to each use of the name
assigned. Arrows should never go up or to the right: that means that you’re re-using a name.

Arrows going down should always originate at the left-edge of a line. Arrows going left are tem-
poraries, and should never also go down.

It’s a good idea to pick one or two letters for the purpose of temporary assignment, and use
them consistently and exclusively for this purpose. (t and u are good. And if you do so, then
modify the arrow test above to allow for re-use of those names on successive lines.)
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How long is a function?

Strive to keep functions as short as possible. Most K functions are four or five lines
long. Although certain programming tasks may demand larger structures, anything over ten lines

should trigger mild alarm, and a function containing more than fifty lines will probably attract
roaches.
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How many arguments should a function have?

One of the most interesting properties of the K language is that function application is
itself a function. Application takes a function on the left and a list of arguments on the right, and

applies the function to the list, mapping each item of the list to the corresponding argument of the
function.

Used properly, this is a wonderfully convenient feature, since functions can be designed to
apply to many small, named things, which are themselves parts of a list or dictionary. Keeping
the parts in a composite data-structure is good for organizational reasons. Designing the function
to see those parts as separate, named entities reduces code and improves readability.

For example, suppose that v is a list of five heterogenous items, and £ is a function of
which re-arranges those items:

V:(12;'xyz;"abc";1.1;10 20 30)
£:([i;s;c;xr;1] (s;c;i;l;r)}

Application of £ to v serially maps the items of v to the arguments of £:

£ .v
(‘xyz;"abe";12;10 20 30;1.1)

Compare £ with the monadic list-functions g and h:

g:{x[1 2 0 4 3]} / what?
h:{
i:x 0; s:x 1; c:x 2; r:x 3; l:x 4
(8;c;i;1;r)} / why?

Good function design is the outcome of taking multiple perspectives on functionality:
from within the function, we want the data already decomposed and ready for processing; from
outside, the function is a node in a network of calculation routines, and we strive for uniformity
and simplicity. Balance these competing forces.

Design functions with meaningful arguments.

Page 18



Modularity

Function modularity is a Good Thing, and one way to achieve it is through the judicious
use of subfunction abstraction. Artfully modularized systems are easier to understand than ones
which are either impenetrably monolithic or which have been decomposed haphazardly.

Kernighan and Plauger’s rules of modularity still apply to K:

Use subfunctions.

Making the coupling between modules visible.
Each module should do one thing well.

Make sure every module hides something.

to which we add two new rules:

Hide shared subfunctions in subdirectories.
Localize unshared subfunctions.

As subfunctions are abstracted, the number of global functions increases. This may help
us in the reading of program text, but interfere with our attempts to interactively explore the sys-

tem. If dis a directory, then we would like td to consist of just the entry-points of &. So where do
the non-entry point subfunctions go?

First, define 4., the utility directory of 4. Banish all shared subfunctions of d to d.u. A
shared subfunction is one which is called by more than one function in 4 and/or d.u. In large
systems, or where the entry points themselves are shared subfunctions, it may pay to place all the
code in d.u, and make the functions in a simple covers on the "real" entry-points living in d.u.
For an example of this approach, see Q.

Next, localize all subfunctions which are called by only one function. For example:

We want to write a function tree which produces an indented list representation of the
structure of some portion of the K tree. tree takes an initial directory x and recursively descends
from x until it finds a non-dictionary. Each recursive step increments a counter variable y, which

tells the level of descent and is used to calculate the number of spaces to prefix to the (unqualified)
directory name.

Here is a version of tree:

tree: {
:[@c: ! $({x,".",yv}/$x
Q)
(G (8" ™), $*|x),,/(x%,/:c)_£\:y+1]}

' 0: treel,‘;0]

k
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Observe that the user of tree has to supply an initial value for the counter (always 0), and
that the starting directory, conceptually an atom, must be a one-element list.

We can’t avoid making tree dyadic, since K doesn’t support polyadic functions, and we

certainly don’t want to gunk up the code with a mostly-useless enlist-if-atomic condition for the
directory path.

We’d also like to have tree print the list and return nil, and that seems to involve testing
the counter to decide whether to return a result (if the call is recursive) or print with no result (if
the call is top-level). We are now well beyond gunk.

In languages without local functions, we would probably settle for having two functions:

tree:{' O:treeRec[,x;0]}
treeRec:{ ...

wher treeRec is the recursive function just described, and tree is the entry-point.

In K, the solution is to make the recursive routine a local subfunction:

tree:{
tr:{:[@c:! ${x,".",y}/éx
()

(, (y#" "),$*|x) ’ l/(xllzc)_f\:y"'l]}
Y O0:tx[,x;0]
}
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Attribute dictionaries

An attribute is just a variable in a dictionary whose name ends with a dot:

var..att

att is an attribute of var because it is an entry in the dictionary var.. (That’s not a typo: the
name of the attribute dictionary is "var.".)

K owns a handful of attribute names: t, 4, ¢, &c. These are the system attributes. Other
utilities own other attributes: Q owns g, the TeX report-writer owns T, &c.

Although any application can specify a range of attributes which it will own, we strongly
suggest that sets of application-specific attributes be gathered under a single attribute-dictionary.
For example, if the application abe uses ten attributes xxx, yyy, zzz, ..., then we recommend:

var..abc.xxx
var..abc.yyy
var..abc.zzz

and not:

var. . xXxx

var..yyy
var. .zzz

There are two reasons for this policy.

First, application variables typically serve as host to attributes managed by several inde-
pendent systems. We want to minimize the chances of name-clash at the attribute level. For
example, x and ¥ might each define a "status" attribute.

Second, tvar. should be small and informative. If var uses x, and x places ten attributes

on variables which use it, then 1var. should tells us that var uses x. This is good information-
hiding.
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Comments

Every line of a K function should be commented. Code and comment should be kept on
the same line. The comments should be aligned for ease of reading. Indentation of the comment
block should mirror that of the function.

sendLeft: { update from left to right link at x=_i

/
s:get[_v; G] / absolute source field name
h:(::;*:)?get[_v; "H] / 0 (::) or 1 (*:)
j:enlist@*x / itemwise index
p:.[att[_d4d; "J];undot s] / left link partition
i::[h;p j;p . x] / index map into right table
d::[h; v j;_v . x] / first (*:) or all (::
@[s;i;:;dl / update source field

Conventions for comments:

If the line is a local assignment, the comment should describe the
meaning or role of the variable.

If the line is a side-effect, the comment should be in the imperative
mode, indicating the action performed.

If the line is a control structure, the comment should describe the
meaning of the condition or loop.

"Dangerous curves'" should be documented in all caps, or contain
some other eye-catching visual device.
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Header comments

How to comment the header of a K function is a matter of some controversy. We recom-
mend that the header be treated as just another line in the function, with this one difference: the
comment should describe the meaning of the function as a whole.

Some programmers believe that the header comment should contain standardized infor-
mation about the function as a whole. For example:

sendLeft: {
/ ds: update from left to right link

/ ts: xyz 1/1/95

/ x: _ior _nif _i is ()
/ rs: none

/ gr: _v

The header comment block contains a function description, author/timestamp data, argu-
ment and result documentation, and information about which global variables are referenced and
assigned. Unfortunately, this style tends to bloat functions with non-executable lines. (Recall that
the typical K function contains but five lines.)

The same information can be packed into the h ("help") attribute for the function:

\d sendLeft..h

ds:"update from left to right link"
ts:"xyz 1/1/95"

arg.x:"_i or n if _i is ()"
rs:"none"

gr:"_v"

Any K variable (and functions are just variables) can have a help dictionary, which then
can be displayed or inspected. This is consistent with K’s general approach to the constructs of

programming: if it matters, make it first-class. Eventually, this form of help may be directly sup-
ported by K’s interactive debugger.
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Header comments and debugging

Some programmers repeat the name of the function as a comment in the header. This is to
assist in debugging. For example,

foo: { / foo
goo x
}
goo: { / goo
Ix
}
foo -3
{ / goo ... + 1
domain error
Ix

A

>

(Remember that "£ a" evaluates £ (to a function) and then applies that value to a. {x+y} is
no more in need of a name than 17 is.)

This approach has one serious drawback (apart from leading you to spend the header com-
ment on redundant information). Namely, in certain circumstances it can give bad information:

hoo:goo
hoo -3
{ / goo ... + 1

Here is a way to recover the name of the broken function which entails no extra work:

foo: {goo x}
goo: {!x}

foo -3
domain error
{ix}

By signalling up one level in the stack (), the error is displayed in £oo on the call to goo.
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The right conditional

K has two forms of conditional evaluation: :{1 and if. The following rules for when to

use which conditional are designed to help you write code where useful information is conveyed
by your choice of conditional.

: [1 has the structure:

r:: [condl
truel

.
H

condN
trueN
falsel]

if has the structure:

if[cond
truel

trueN]

Use if when side-effects are desired; for example, to assign default values to the argu-
ments of a function:

foo: {
if[x~_ n;x:101]

Although i £ does not support if-then-else logic, it should be used even when that logic is
required but where side-effects are intended:

if[b:x>5;foo[x]]
if[~b;goo[x]]

and not:
: [%>5; foo[x] ;goo[x]]
The conditional should be used only when a result is desired:
s:lx~_n;ly;,yl
Use if when testing to return from a function with an explicit result:

foo: {
if[()~%x;:0]
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Reverse the condition when the function can return nil:

goo: {
if[~()~x

Use if, not : [1, when signalling from within a function:

if[x=0;’"cannot be zero"]

Consistent use of if and the conditional will make your code more readable: seeing if,

you know that a side-effect is sought and a result is not; seeing : ], you know that a result is
intended unconditionally.
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De-looping

List algorithms in K are simpler, shorter, clearer, and almost always faster than their loop-
ing counterparts. Summing all the elements of a matrix, all the rows of a matrix, all the columns
of a matrix m:

+/m / sum the columns of m
+/'m / sum the rows of m
+//m / sum m

Summing the rows with a nested loop:

vsum: { [m] / shoot this code
r:(#m)#0
do[#m
v:m[i]
s8:0
do[#v
s:8+v[i]]
r[i] :s]
r}

Sometimes it is necessary to write loopy code, either because the algorithm is inherently
iterative, or because we aren’t smart enough to find the list solution in the time available. The lit-
erature devoted to this topic is vast, and we won’t replay it here. Instead, we’ll concentrate on an

example which shows how, in some cases, a clear looping solution can serve as a stepping-stone
on the way to loop-elimination.

We want to write a function which takes a list of equal-length string-lists . and a list of
strings s and returns the row-indices where each string occurs in the same item of each string-list:

L:(("this"
" is "
n the 1]
"first"
"ligt®)

("and"

"thig"
" is "
Ilyet L
"another"))

S: (llisll;llanll)

search[L;s]
0 4

The logical units of the problem are a single list of strings and a single string. We require
a function which takes a string-list x and a string y and tells us which rows of x contain v:
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ss: (&0<#:’x _ss\:y} / ¥y occurs in x@ss[x;y]

Now, using ss, we write the loopy version:

searchl: { / loopy search
r:iff*x / initialize result to all rows
i:0 / initialize counter
do[#x / loop over each string-list
r@:ss[x[i]@r;y[i]] / save result indexed by hits
i+:1] / increment counter
r} / indices of rows where all hit

At each iteration, we derive a new result by indexing the previous result of ss by the new
result of ss. The arguments to ss are the i-th string-list indexed by the previous result and the i-

th string. (Alarm bells should now be going off for K programmers familiar with +/ (and which
are not?)).

Most loop-eliminations are achieved by using some form of each, but this is not one of
them*: the result of each iteration depends on the result of the previous iteration, and each-itera-
tions are independent of one another. So the next place to look is £/, "over":

An "over" solution will have the form:

£/[x;y;:2]

where £ will be applied iteratively to three arguments: x, the result of the previous iteration; y, a
list of string-lists; and z, a list of strings to search for in corresponding lists of y. A good £ is:

{x@ss [y@x;z]}
which we get by re-lettering the inner calculation of the do-loop and discarding the loop-index i.
Now define searchz2 as this function over the appropriate values
search2: {{x@ss[y@x;z]}/[!#*x;x;v])}
Observe that we prime the iteration with 1#*L, the indices of the first string-list.

search2[L;S]
0 4

Derive non-looping solutions from well-designed looping solutions.

*  Not strictly true: the problem can be solved with each, but the converging solution using
over is both faster and more readable.

Page 28



Window scripts and window functions

Consider the following simple problem. A window add with two inputs a and B, both
Integer atoms, an output atom ¢, and a button plus. When plus is pressed, the contents of A and
B are added together and the result placed in c. The contents of aaa should be arranged thus: a
next to B, ¢ below a and B, and P1us below c.

Here are three ways to write this in K:

\d Aaddi1 go to Addl directory
A:B:C:0 initialize atoms
C..e:0 result is output

Plus:"C:A+B"
Plus..c:‘button
\d ~

a: (*A'B; ‘C; ‘Plus)

define button action
classify as a button
go to Addl. directory
arrange entries

NN N NN NN

Add2.A:Add2.B:Add2.C:0 / "Add2" is repeated seven times
Add2.C.e: 0

Add2.Plus:"C:A+B"

Add2.Plus..c:‘button

Add2..a: (*A'B;‘C; ‘Plus)

Add3:.+((‘A;0;) / windows are dictionaries
(*B;0;)
(*C;0;.,('e;0))
(*Plus;"C:A+B";, ‘c'‘button))
Add3.:., (‘a; (*A'B; ‘C; ‘Plus))

If the window is defined in a script, follow the form of add1, not aAda2. The adaa3s code is
hardest to read, and should never be used interactively, or in a script. However, if the design calls
for encapsulating the window-construction logic in a function, then you have no alternative (since
system commands such as \d are not available inside functions):

add:{ / makes an Add window
r:.+(('A;0;)
(*B;0;)
(*C;0;.,('e;0))
(*Plus;"C:A+B";, ‘c‘button))
s:.,('a; (*‘A'B;‘\C; ‘Plus))
(r;s)}

_d[*Add17'Addl17.] :add[] / make an Add window
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Reference error hell

Here’s a simple way to generate a reference error:

£:{a.b}
a:10
.k.a.b
term: reference

On line 1, £ is parsed, and K resolves the references to a.b by manufacturing the directory
a in which the single entry b is set to nil:

f:{a.b}
\v

a f
a

«r (*b; ;)

On line 2, an attempt is made to assign the name a to 10. If successful, this would wipe
out b, turning £ into junk. Therefore, K refuses the assignment.

Observe the effect of this refusal, in the case where a.b has been defined before £;

a.b:101
f:{a.b}
a:10

.k.a.b

term: reference
a.b

-0

A reference error is an error in the application. Don’t simply trap and proceed: iden-
tify the source of the error in your code and fix it.

A reference error is usually not hard to track down. In almost every case, it arises as the
result of using replacement where indexed assignment is sufficient. For example, consider the

case where w is a window with entries A and B, £ is a function which resets w to its default state,
and g is a function which uses w.A and w.B:

£:{(W::.+(*A'B;0 0)} / makes a W

£11 / make a W

‘show § ‘W / display W

g: {W.A+W.B) / add A and B of W
£1] / reset W

.k.W.B
term: reference

This is bad design. If w is meant to persist throughout the lifetime of the process, then £ should
not replace it wholesale, even with a structurally identical copy. £ is doing too much. Where £
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does just enough, there is no reference error:

£:{W[*A'B]:0 0}
g: {W.A+W.B}
WIA'B]:£[]
‘show $§ ‘W

£11]

Never use v:a when vii] :a will do.
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Engine design

Design the engine independently of the screen. The engine is a system of variables,
constants, and pure functions. Pay no attention to screens, file I/O, real-time feeds, &c. Deal with
those components later. In K, this is easy, since in the final analysis the engine is able to "see"
only other variables on the K tree. So you might as well develop the engine entirely in the context

of variables and worry later about when, how, and how often those variables get populated by
external agents.

Factor the engine into functional relationships between the variables which will hold
the data for your application. For example, a simple calculator consists of a set of input vari-
ables, a set of output, or result variables, and a set of functional relationships between inputs and
outputs. Decide on the proper data-structures for inputs and outputs (atoms or lists, integers or
reals, &c.), and design and implement your functions accordingly. Now is also the right time to

decide on names for things, and on how variables and functions are to be encapsulated. Some
questions to ask are:

Will I need more than one instance of X?

Can X ever go to empty?

What is the default state of X?

Is X an instance of a more general kind of thing Y?

Design the functional components to expect correct data. Don’t waste time writing
code to handle bad or incomplete data. Push the buck for this job up or out a level. Expect that by
the time a function is called, the data will be filtered, defaulted-out correctly, &c. For example,
don’t pollute a function which expects a list by adding a test to convert atoms to one-element lists.
Defer reponsibility for that to whoever calls the function.

Don’t error trap unless there is a compelling reason to do so. For example, don’t pro-

vide for division by zero unless the data can logically be zero. Plan to error trap as high in the
calling tree as you can.

Don’t design elaborate result-structures with error-codes and messages. For exam-
ple, don’t design your functions to return lists in which the first element is a return code, and the

second the data or a message (a popular, but wrong-headed strategy). Emulate the K primitives,
which signal errors.

Don’t over-design data-structures. For example, don’t use a dictionary of atoms where

a list will do. Higher level routines can always be written to convert more complicated forms of
data into the simple forms the engine requires.

Be skeptical about tools. Don’t design tools prematurely, or with too general a purpose
in mind. Keep the tools as simple as the application requires. Don’t spend too much time devel-
oping the tool-set. Most tools contain functionality which is never used. Avoid using tools which
are too heavy for the job at hand. Don’t overpopulate the tree with utility functions and variables
which your application will not use. If you want one tool out of a pre-packaged set of twenty,
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extract that tool and tuck it into your application. If you want a single piece of functionality built
into a larger system, speak with the author and learn how to implement it yourself. Remember
that in K, ideas are worth more than code.

Minimize the number of moving parts.
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Window design

Design and implement the window using a dummy engine. For example, a bond calcu-
lator may require functions p2y and y2p from a financial toolkit. But you can implement the win-
dow part of the calculator without having the actual functions ready to hand:

\d .fu

pP2y:{[p;c;m] .1l*p}

y2p:{[y;c;m] 10.*y}

\d .Bond

Price:10#100.
Yield..d:".fu.p2y[Price;Coup;Mat]"
Yield.. :".fu.y2p[Yield;Coup;Mat]"

Strive to make engine and window one. For example, a simple window which incre-
ments and decrements the value of a variable does not need to distinguish the two:

\d Win

Value: 0
Inc:"Value+:1"
Dec:"value-:1"
Inc..c:Dec..c:‘button
\d ~

a: (‘Value; ‘Inc‘Dec)
\d 4

‘show $§ ‘Win

The window is the directory win. The value is the variable value. The function engine is the pair

of variables Inc and pec. Ask yourself whether your application is simple enough to avoid mak-
ing the distinction between window and engine.

Distinguish input and output variables.
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Connections

A simple calculator engine consists of a set of input variables, a set of output variables,
and a set of functional relationships between inputs and outputs. The engine is presented to the
user through a window, whose parts are a subset of the input and output variables.

In connecting the inputs to the outputs and making some of them visible to the user, you
must decide how to implement the connections. You have three choices:

the outputs calculate the inputs through dependency evaluation
the inputs calculate the outputs through trigger execution
the user calculates the output results by means of a button

This choice will be guided by considerations of utility, performance, and the logical characteris-
tics of the functional relationships. Here are some examples.

Outputs calculate inputs:

\d wi

A:B:0
Cc..d:"A-B"
C..e:0

\d 4

‘show § ‘W1

Inputs calculate outputs:

\d w2

A:B:C:0
A..t:B..t:"C:A-B"
C..e:0

\d +

‘show § ‘w2

User calculates outputs:

\d W3

A:B:C:0

C..e:0
Spread:"C:A-B"
Spread..c:‘button
\d 4

‘show § ‘W3
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Dependencies

Dependencies should be side-effect free. Dependency definitions are similar to £ and g
functions: if def is var..q, and var is invalid, and K needs a value for var, it will evaluate def,
the value for which becomes the value of var. K needs the value of a variable each time it is ref-
erenced, either by code or because it is on the screen.

We call var. . £ and var. .g format and validation "call-forwards", since K will call

var..f to format var, and var. .g to validate incoming candidate values for var. Analogously,
we can think of var. .d as the "value call-forward" of var.

The evaluation of a dependency should have no side-effects. Logically, the form of a
dependency definition is

var..d:"fool[A;...;Z]"
where foo and A ... 2 are the global variables on which var depends. If any one of these variables

1s assigned, or otherwise becomes invalid, then var is declared to be invalid. On the next refer-

ence, whether through code or because it is on the screen, var. .d will be evaluated for var’s new
value.

No dependency should ever have the form
var..d:"R:foo[A;...;Z];..."

nor should foo conceal within itself assignments to the tree, or other side-effects.
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Event code

Side-effects should be made explicit. Typically, all side-effects occur in triggers, which
are fired on assignment-events, and in screen-event code, which is attached to atttributes such as
var..k and var..kk. No trigger, or any other event-code locus, should ever have the form

"fool...]"

since this style of definition hides the effects of the trigger within foo. Instead, effects should be

broken out and made explicit in the code. What holds for triggers holds also for screen-event
code. Namely,

If only one variable is assigned:
var..t:"A:..."

If more than one, within the same directory D, and the values are available as a list:
var..t:"D[‘A ...‘Z]..."
And, in the general case, where there are multiple side-effects:

var..t:"A:...

Z:..."
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fand g

Updating the display of a variable automatically updates the value of the variable:

A:0
‘show $ ‘A / now edit A to be 12

A
12

Assignment to a variable which is on the screen causes K to update the display:
A:13 / display is updated to 13

There are no explicit display reads or writes in K. Think of the display of a as a string
made from the value of . Two arrows connect a with its display: the output arrow, going from a
to its display-string, and the input arrow, going from the display-string to a. By default, the output
arrow is the function $: (format); by default, the input arrow is the function type$, where type is

one of 0, 0.0, *, &c.; i.e., the datatype of (a visual atom of) A. Both functions are monadic on the
data of a.

The £ attribute is a monadic function of the data which returns a string. Ifa. .£ is set, then
whenever K needs to update the display, it will call £ on the data to get the new display string.
The g attribute is a monadic function which takes a string and returns a value. Whenever K needs

to update the variable from the display, it will call g on the string to get the new value of the vari-
able. For example,

A..f:{$x-2) / output 2 less than the value
A..g:{2+. x} / be 2 more than the input

£ and g should not contain side-effects. The job of £ is to produce a string from a value;

the job of g is to produce a value from a valid input string. If g cannot convert the input string to
a value, it should signal an error:

A..g:{(if[0>r:. x;’"negative number"];r}

Effects should be extracted from g and placed either in the trigger code, or eliminated alto-
gether by making other variables dependencies. That is, never ever do:

A..g:{r:checkNum x;B:calc r;r}
Instead, keep g pure, and then either have a calculate B or have B calculate itself from a:

A..g:checkNum

A..t:"B:calc . v"
B..d:"calc A"
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Fast loads
Loads should take no time.

Suppose you write a script a.k which involves an expensive initialization, say by means
of a synchronous request for data from a server:

A:(‘server;1234) 4:(‘retrieve;)
You mean to load a.k from within the application b.k, which looks like this:
\1l a
\d .B
Show:"‘*show $§ ‘.A"
Show..c:‘button

\d 4
‘show § ‘B

but now b takes too long to come up.

So now you decide to improve things by having show load the a script:

Show:".\"\\1l a"

This is wrong. Instead, modify the a script by moving the retrieval code into a function:

\d .a
retrieve: {(‘server;1234) 4:(‘retrieve;)}

and changing the definition of show in b.k:

\l a
\d .B

Show:"‘show$.['.A;();:;.a.retrieve[]]"

-
H

Page 39



Composition and each-elimination

Learn to spot expressions with sequential each’s like this one:

*:f|rv / first of each reverse of each v

and replace them with function-compositions like this:
(*|:)'v / last of each v
In general, seek to replace patterns like
frg’...h'v
with
(feg@...Gh@) 'v
Application (@) can be elided when the symbol to the left is that of a K verb:
(+f@)’v
Here’s another example:

|:,7:1 2 3 & / reverse each pair-wise join

w N R
B WwN

(].)":1 2 3 4 / (reversgse join) pair-wise

L)
[
[N

Compositions are faster than sequential each’s (one iteration replaces many), and easier to
read (and code!).

(~@!:)'paths / dictionaries in list of paths
1(~=)":vec / vec[i+l] differs from vec[i]
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All the forms of dot

In K, there are several ways to apply a function and index a variable. Underlying them all
1s the ur-function

and pronounced "dot". Application of the n-adic function £ to a list of arguments v of count n is
expressed:

£ . v

Application of the monadic function g to w is expressed:

g . ,w
sugar for which is

g ew
Even more simply:

gw

Brackets are more sugar:
EL*v;...;*|v]
glw]

Maximize readability by using the simplest syntax available.
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Defaults

Use nil to mean '"'default value".

In multidimensional indexing, K uses nil (_n) to mean "all":

m[;2 3] / columns 2 and 3 of all the rows
Follow suit; for example,

copy:{[table;fields]

-
H

if[ n~fields;fields:!table]

Interpret () as '""'none'".

copy:{[table;fields]
if[()~fields;:()]
if[_n~fields;fields:!table]

If the arguments to a function are not independent, order them left-to-right in dependency-
order. That is, argument i restricts the choice made by argument i-1. In particular, try to arrange

things so that if argument i is nil, all arguments to the right of i are logically nil. For example, in
the example above, it would be a mistake to order the arguments,

copy:{[fields;table]

Let nil mean "'none" if "'none" is the default.

foo:({

if[ n~x;x: ()]

.
H
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Projection

Never elide semicolons in a projection. For example, if £ is a triadic function, the seven
possible projections should be written:

£l;;1 / not f[]
£l;;cl

£fl:;b;] / not f£[;b]
£l;b;c]

fla;:] / not f[al
fla;;c]

fla;b;] / not fla;b]
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Which each?

Projection and each are more general than each-right and each-left. A function can be
projected on any of its arguments, and a function can be applied to each item of many lists. Each-
right and each-left apply dyadic functions only, itemwise right or itemwise left.

Any expression involving each-right and each-left can be transformed into an equivalent
expression using only projection and each. For example,

12 3 foo/:10 20 30 40

fooll 2 3;1710 20 30 40

Typically, expressions involving each-right and each-left are easier to read, and certainly
easier to write, than expressions couched in terms of projection and each. For example,

a foo/:\:b
expands to
{foolx;]1’y}[;bl’a

Prefer each-right and each-left to projection and each.
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What’s in a script?

A script-template used by one programmer consists of the following sections:

\1 subscript / load subscripts

\e 1 / global state-settings

\d .chunk / carve out a chunk of the tree
foo:({ / define functions

Var:... / define variables

var..d:... / define attributes

.
b

Only top level scripts contain shows, and they come last:

‘show $§ ...

Some programmers like to keep variable initialization and attribute definition together:

A:10 / A section
A..f:fmt

A..g:val

B..d:"A+10" / B section
B..f:fmt
B..e:0

Cc:19

while others prefer to keep them separate:

A:10 / value section

c:19

B..e:0 / enabling section
A..f:fmt / format section
B..f:fmt

A..g:val / validation section
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SAM: a simple application model

SAM is an abstract model of K applications. Think of SAM as having an inner core and
an outer layer.

The inner core of SAM consists of variables and constants interconnected by functional
dependencies and triggers. All functions, and all dependencies expressed in terms of them are
completely side-effect free. All side-effects in the core are explicitly located in triggers. Changes

in the state of the core happen only as the result of activity in the outer layer, which in turn is
restricted to the form of

variable assignments caused by

window edits
radio box check button events
set messages from other processes (including real-time feeds)

and
code execution caused by
button presses
click and double-click events
close callbacks
Moreover,

variable assignments only

invalidate other variables
fire triggers

and
code execution only

assigns variables
sends messages to other processes
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Subwindows

Compare the behavior of the following two implementations:

\d a1

Show:"‘show § ‘.k.B1l"
Show..c:‘button

\d 4

Bl1:20

‘show § ‘Al

Press show to display B1, and then quit from the window-manager menu of a1.

\d A2
Show:"‘*show $§ ‘B2
Show. .c:‘button
B2:20

\d ~

a: ‘Show

\d@ 4

‘show § ‘A2

Repeat the steps for a2. Notice that B1 does not close down, but that B2 does. B2 is a sub-
window of a2.
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Popups and rearrangement

Consider the task of presenting the user with two (or more) windows a and B. You know
that the user will never operate more than one window at a time.

Logically, there are three objects: a menu M, window a, and window B.

In order to avoid polluting the desktop with lots of windows (the Front key is not univer-

sally supported, different window managers handle popups differently, &c.), use the following
technique:

\d .w

M.A:" . W..a: M A" / W shows M and A

M.B:".W..a: M B" / W shows M and B

M..c: button / M is a menu

\d .W.A / A is a subwindow
one:0

two:0

\d .W.B / B is a subwindow
v:0

Inc:"V+:1"

Inc..c: button

\d .

“show $ ‘W / show W

Press M. A to arrange w to show a; press M. B to arrange W to show B.

Avoid popups.
Minimize the number of windows in an application.
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New wine for old bottles

The following rules appear in Kernighan & Plauger’s The Elements of Programming
Style, second edition, NY: McGraw-Hill, 1978.

Write clearly -- don’t be too clever.

Say what you mean, simply and directly.

Use library functions.

Avoid temporary variables.

Write clearly -- don’t sacrifice clarity for "efficiency"'.

Let the machine do the dirty work.

Replace repetitive expressions by calls to a common function.
Parenthesize to avoid ambiguity.

Choose variable names that won’t be confused.

Avoid the Fortran arithmetic IF.

Avoid unnecessary branches.

Use the good features of a language; avoid the bad ones.
Don’t use conditional branches as a substitute for a logical expression.
Use the "telephone test" for readability.

Use DO-END and indenting to delimit groups of statements.

Use IF-ELSE to emphasize that only one of two actions is to be performed.

Use DO and DO-WHILE to emphasize the presence of loops.

Make your programs read from top to bottom.

Use IF ... ELSE IF ... ELSE IF ... ELSE ... to implement multi-way branches.

Use the fundamental control flow constructs.

Write first in an easy-to-understand pseudo-language; then translate into whatever
language you have to use.

Avoid THEN-IF and null ELSE.

Avoid ELSE GOTO and ELSE RETURN.

Follow each decision as closely as possible with its associated action.

Use data arrays to avoid repetitive control sequences.

Choose a data representation that makes the program simple.

Don’t stop with your first draft.

Modularize. Use subroutines.

Make the coupling between modules visible.

Each module should do one thing well.

Make sure every module hides something.

Let the data structure the program.

Don’t patch bad code -- rewrite it.

Write and test a big program in small pieces.

Use recursive procedures for recursively-defined data structures.

Test input for validity and plausibility.
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Make sure input cannot violate the limits of the program.
Terminate input by end-of-file or marker, not by count.

Identify bad input; recover if possible.

Treat end-of-file conditions in a uniform manner.

Make input easy to prepare and output self-explanatory.

Use uniform input formats.

Make input easy to proofread.

Use freeform input when possible.

Use self-identifying input. Allow defaults. Echo both on output.
Localize input and output in subroutines.

Make sure all variables are initialized before use.

Don’t stop at one bug.

Use debugging compilers.

Initialize constants with DATA statements or INITIAL attributes; initialize variables with
executable code.

Watch out for off-by-one errors.

Take care to branch the right way on equality.

Avoid multiple exits from loops.

Make sure your code "does nothing' gracefully.

Test programs at their boundary values.

Program defensively.

10.0 times 0.1 is hardly ever 1.0.

Don’t compare floating point numbers just for equality.

Make it right before you make it faster.

Keep it right when you make it faster.

Make it clear before you make it faster.

Don’t sacrifice clarity for small gains in "efficiency".

Let your compiler do the simple optimizations.

Don’t strain to re-use code; reorganize instead.

Make sure special cases are truly special.

Keep it simple to make it faster.

Don’t diddle code to make it faster -- find a better algorithm.

Instrument your programs. Measure before making "efficiency’ changes.

Make sure comments and code agree.

Don’t just echo the code with comments -- make every comment count.
Don’t comment bad code -- rewrite it.

Use variable names that mean something.

Use statement labels that mean something.

Format a program to help the reader understand it.

Indent to show the logical structure of a program.

Document your data layouts.

Don’t over-comment.
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