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ABSIRACT

Bertrand Russell's Principia Mathematica has played a crucial role in the development of
modem logic and philosophy. Notwithstanding its considerable influence, Principia's contents
are not well known and, in important respects, not well understood today, Although several
commentaries about Principia have appeared since its publication, most of these
mischaracterise several of its gross structural features -- for instance, those by Copi, Kleene,
Kneale, and Ramsey -- and even some of the better commentaries remain unclear about its

)#details -- for instance, those by Chihara, Hylton, and Quine.

This dissertation examines Principia Mathematica in detail. The examination is carried out in
light of four general aims. The first is to explain the nature of the logical theory that Russell
endeavoured to put forward in Principia. The second is to examine how Russell put
Principia's logical theory to work to serve his various ends. The third is to show how this
logical theory's general structural features and several of its details relate to the wealth of ideas
that Russell seriously entertained and pursued in the period in which he was working on
Principia, Finally, the fourth aim is to compare Russell's conception of his logical theory with
contemporary conceptions of logic,

The dissertation is divided into five chapters, Chapter 1 discusses some of the ends that Russell
set for himself in his 1903 Principles -- ends which he intended the logical theory of Principia
to accomplish. The next two chapters look at the antecedents to this logical theory: Chapter 2
examines the logical theory of Principles and Chapter 3 examines Russell's celebrated vicious-
circle principle, The last two chapters describe the logical theory proper of Principia: Chapter
4 explains the theory's propositional fragment and Chapter 5 explains its quantificational
fragment. This last chapter also details the theory's type-theoretic features,
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Introduction

Bertrand Russell's Principia Mathematica stands as a monumental work which has played a

pivotal role in the history of logic.' Among other things, it contributed one of the first full

presentations of modem logic;" it provided the first unified solution to all of the modem

paradoxes, both logical and semantic; it carried out the first consistent reduction of the

concepts of mathematics -- more precisely, number theory, transfinite ordinal and cardinal

arithmetic, and real analysis -- to those of class theory; and, by means of this reduction, it

produced the first consistent deduction of the theorems of these branches of mathematics from

the axioms of class theory,3 Accordingly, Principia went a long way toward accomplishing the

logicistic aims that Russell had earlier set for himself in his 1903 Principles ofMathematics

(ihenceforth Principles).4

Not surprisingly, Principia's influence has been considerable. Philosophically, it was

instrumental in forming the views of Wittgenstein, Ramsey, and the logical positivists and, as a

result, directly and indirectly affected the development of analytic philosophy in general,

Technically, it did no less than co-found modem logic, along with Frege's Begriffsschrif.

Because Frege's work was not widely circulated during the first half of the century, Principia

'A.N. Whitehead and B. Russell, Principia Mathematica (henceforth, Principia), vols, 1-3
(Cambridge: CUP, 1910-12; 2nd edn. 1927) Although Whitehead's name appears first, it
is Russell who is responsible for those parts that are of logical and philosophical interest,

-Frege's Begriffsschrifi gave the first presentation of modem logic.

)Note that, rather than saying 'consistent' here, it would be more accurate to say 'consistent
insofar as one has reason to believe',

"The Principles ofMathematics. (London: CUP, 1903). (I shall refer to the second edition:
New York: Norton, 1938.)
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was the source-book for students of this new subject, among whom were Carnap, Tarski,

Gddel and Quine,

Notwithstanding its considerable influence, however, Principia's contents are not well

known and, in important respects, not well understood today. Although several commentaries

about Principia have appeared since its publication, most of these mischaracterise several of its

gross structural features -- for instance, those by Copi, Kleene, Kneale, and Ramsey -- and even

some of the better commentaries remain unclear about its details -- for instance, those by

Chihara, Hylton, and Quine. There are several reasons for these deficiencies, First, the

conception of logic that underlies Principia's technical development is, in many respects, at

variance with more contemporary conceptions, Secondly, Principia's discursive explanations

and its formal work at times fall short of contemporary standards of rigour and clarity. Thus,

for instance, these do not explicitly distinguish the sundry roles played by its axioms, rules of

inference, and even rules of formation, usually simply calling them all "principles," Principia

contrasts notably with Frege's Grundgesetze der Arithmetik in this respect, Thirdly, Principia's

discursive explanations and formal work contain several peculiarities which may even strike

one as incongruous at first blush, Thus, its introduction and Chapter *12 present mutually

incompatible definitions of the notion of predicative function. Chapter *9 specifies a very fine-

grained notion of type for propositions and propositional functions, while Principia's actual

deductions may be taken to appeal to a rather coarse-grained notion -- yet a third notion is

employed to carry out class theory, Principia's various explanations of its notion of order have

caused scholars to be confused about the nature of its ramified theory of types. And, most

notably, its Chapters *9 and * 10 offer two quite different and entirely independent expositions

of quantification theory.

This dissertation, therefore, examines Principia Mathematica in detail, The
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examination is carried out in light of four general aims. The first is to explain the nature of the

logical theory that Russell endeavoured to put forward in Principia. The second is to examine

how Russell put Principia's logical theory to work to serve (some of) his various ends, The

third is to show how this logical theory's general structural features and several of its details

relate to the wealth of ideas that Russell seriously entertained and pursued in the period in

which he was working on Principia. Finally, the fourth aim is to compare Russell's conception

of his logical theory with contemporary conceptions of logic,

The dissertation is divided into five chapters. Chapter 1 discusses some of the ends that

Russell set for himself in his 1903 Principles -- ends which he intended the logical theory of

Principia to accomplish. The next two chapters look at the antecedents to this logical theory:

Chapter 2 examines the logical theory of Principles and Chapter 3 examines Russell's

celebrated vicious-circle principle, The last two chapters describe the logical theory proper of

Principia: Chapter 4 explains this logical theory's propositional fragment and Chapter 5

explains its quantificational fragment. This last chapter also details the theory's type-theoretic

features,
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Chapter 1

The Aims of Principia Matlhematica

Russe9! intended Principia to accomplish three separate, although interrelated, aims: Principia

should give a full presentation of modem logic by means of articulating an interpreted formal

system, It should provide a unified solution to his and other recently discovered paradoxes,

both logical and semantic,' It should show by means of the formal system that mathematics can

in a precise sense be reduced to logic. Russell had explicitly set these aims for himself in

Principles and they occupied his attention during the decade that he spent writing Principia, I

discuss the first and second of these aims separately below. Because I am specifically

concemed with Principia's logic and not with its reduction of mathematics to such logic, I

forego any discussion of the third aim in what follows,

1. The Formal System

In order to understand the significance of Russell's aim of presenting an interpreted

formal system in Principia, one must see both what he takes a formal system to be, and how he

considers it to be interpreted,7 I begin by looking at the former concern, Following Frege and

to a certain extent Peano, Russell takes such a system to be a formal object consisting of

'As we shall see, Russell did not think that this distinction had any relevance to the solution
of the paradoxes.

6Although Russell explicitly states these aims in Principles, he never presents them together.
They are rather individually repeated throughout the text.

7For expository purposes, 1 shall in what follows consider a formal system proper to be a
purely formal object -- that is, something individuated by purely syntactic criteria. I do not
intend such individuative criteria, however, to exhaust the important features that Russell
ascribes to such an object,
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various elements, including crucially its primitive vocabulary, its rules of formation, its axioms,

its rules of inference, and its notions of deduction and theoremhood, Russell, in turn, sees these

elements as effectively determining both (what we would now call) a formal language and a

formal calculus. The primitive vocabulary and rules of formation in effect determine the

formal language by specifying the terms, predicates, and open and closed formulae, The

notions of deduction and theoremhood in turn determine the calculus by specifying the objects

that are the deductions and theorems, Thus, where P is a set of formulae and C is a formula, a

deduction from P -- its premise set -- to C -- its conclusion -- is a sequence of formulae that are

related to P, C, and each other in certain effectively specifiable ways, A theorem is simply a

conclusion of a deduction from an empty premise set, When I examine Principia in detail, I

shall concentrate on Russell's particular definition of these items, From what I have already

said, however, it is clear that Russell's notion of formal system, qua formal object, is very much

like the modem notion.

I now move on to examine how Russell takes a formal system to be interpreted, In

contrast to the first concern, Russell's conception in this regard differs considerably from the

modem one, although not completely, I divide the examination into two parts, In the first part,

I examine how Russell interprets a formal system's formal language and, in the second part,

how he interprets its formal calculus. In both these parts, I shall focus exclusively on the

formal system that Russell presents in Principia,

There are two important aspects of Russell's interpretation of Principia's formal

language. For convenience, I dub these fixity and universality, Fixity: Like Peano and Frege

and unlike the contemporary algebraic logicians Boole, Schroder, and Lciwenheim, Russell

takes Principia's formal language to enjoy a fixed interpretation. He takes this interpretation,

moreover, to be fixed in a compositional way, Each particle of Principia's primitive
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vocabulary enjoys a fixed semantics in the sense that it means some specific object in his

ontology -- which he calls the realm of being. Likewise, each formula constructed out of these

particles according to Principia's rules of formation enjoys a fixed semantics in the sense that it

means what Russell calls a proposition, which is simply the ordered complex of objects that are

meant by the constituent particles. These claims will be spelled out more fully when we

investigate his Principles and other pre-Principia writings. At this point, however, we can

already say that this aspect of how Russell interprets Principia's formal language is very much

at variance with the contemporary model-theoretic conception. According to this conception,

we may treat the terms and formulae of any formal larnguage as de-interpreted and assign them

whatever mathematically tractable interpretation we may choose,

Universality: As is well-known, Russell takes Principia's formal language to be

universal and, indeed, he does so in two separate but interrelated ways. First, he construes its

variables to range over everything there is -- that is, everything there is in his realm of being, It

is noteworthy that Russell had, in fact, construed his formal language's variables to range over

everything there is long before he wrote Principia but the particular way in which he did so

contrasts starkly from the way in which he does in Principia, In Principles and other pre-

Principia writings, he meant this in the sense that each variable was understood to range over a

completely unrestricted universe of discourse,. In these earlier writings, he more than once

offered a certain argument for this construal;

It is customary in mathematics to regard our variables as restricted to certain
classes: in Arithmetic, for instance, they are supposed to stand for numbers,
But this only means that if they stand for numbers they satisfy some formula,
i.e., the hypothesis that they stand for numbers implies the formula. This, then,
is what is really essential, and in this proposition it is no longer necessary that

}This position, however, seems to be rejected in one of Principles's appendices in which a
version of the simple theory of types is put forward.
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our variables should be numbers: the implication holds equally when they
are not so, ... Thus in every proposition of pure mathematics, when fully stated,
the variables have an absolutely unrestricted field,[Principles, 7]

In Principia, by contrast, Russell introduces his ramified theory of types specifically in order to

forbid this particular construal because he holds it responsible for the paradoxes, Nevertheless,

he construes Principia's variables to range over everything there is in the sense that anything

there is is understood to fall under some particular type and each type is understood to have a

class of variables that range over and only over all of the objects that fall under it. Note that

this construal is still similar to his earlier construal in that it entails that there can never be

anything in the realm of being that falls outside the scope with which his formal language's

variables are concerned,

Secondly, and more generally, Russell takes Principia's formal language to be universal

in the sense that he takes any proposition (which is expressible by any means) to be expressible

by means of some one of its formulae. If we consider Russell's theory of propositions -- we

shall discuss this in detail when we look at Principles -- and his ramified theory of types, we

may understand this position to be an unsurprising and natural outcome, According to his

theory of propositions, any given proposition P is simply an ordered complex of objects each of

which belongs to the realm of being, According to his ramified theory of types, each object in

the realm of being falls under a type and each type has a class of particles -- its variables --

belonging to Principia's primitive vocabulary which range over all and only the objects falling

under that type. Any particular particle of such a class of particles, therefore, may be taken at

any one time to refer to any object falling under the type, 9 In this light, if for each constituent

9For the moment, I am saying that a variable may be taken to refer to any object belonging
to its type. Russell's account is actually more complicated than this construal and I shall discuss
it when I examine his infamous any/all distinction.
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object o of the given proposition P, we construe a particle of its type as referring to o, then if

we arrange all such particles according to the rules of formation in a way that is analogous to

the way that P's constituent objects are arranged, these particles will constitute a formula of

Principia's formal language that means the proposition P.

Russell is most forthright about this position when he asserts its contrapositive, viz., if

there is no formula of Principia that expresses some putative proposition, then it cannot be

expressed by any means -- in particular, it cannot be expressed by any sentence of ordinary

language even if some such sentence may appear to do so, Russell very explicitly asserts this

contraposition in various passages where he discusses the consequences of the theory of types.

There he says of any sentence of ordinary language that violates the grammatical restrictions

dictated by the theory of types that even if it may appear to express a proposition, it must fail to

do so. Thus, he writes in his 1937 Introduction to Principles:

The technical essence of the theory of types is merely this: Given a
propositional function "q'x" of which all values are true, there are expressions
which it is not legitimate to substitute for "x," For example: All values of "if x
is a man x is a mortal" are true, and we can infer "if Socrates is a man, Socrates
is mortal"; but we cannot infer "if the law of contradiction is a man, the law of
contradiction is a mortal," The theory of types declares this latter set of words
to be nonsense, and gives rules as to permissible values of"x" in "+x." In the
detail there are difficulties and complications, but the general principle is
merely a more precise form of one that has always been recognized. In the
older conventional logic, it was customary to point out that such a form of
words as "virtue is triangular" is neither true nor false, but no attempt was made
to arrive at definite set of rules for deciding whether a given series of words
was or was not significant, This the theory of types achieves.[Principles, p.
xiv]

Russell actually holds a stronger version of the position described above. Namely, not

only does he take any proposition that is expressible by any means to be expressible by means

of some formula belonging to Principia's formal language, but he also takes it that insofar as

any proposition is expressible by some means -- say by means of some sentence of ordinary
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language -- it is so expressible in virtue of already being expressible by a formula of Principia.

The reason that Russell holds this stronger position stems from his view of logical analysis,

which he developed in the decade before Principia was published. 1o Briefly, according to this

view, although a given sentence S of ordinary language may express a given proposition P, S

may have on the surface a grammatical form that is radically different from the "logical form"

of P. In order to discover P's logical form, we should start by analysing S. Such an analysis

should lead to another sentence S, which also expresses P and whose grammatical form is in

some sense closer to the logical form of P. We should then analyse S, and this process should

lead successively to the sentences S,, S3, etc., each of which expresses P and each of which has

a grammatical form that is closer to the logical form of P than is the grammatical form of its

predecessor. At the end, this process should lead to some sentence S, whose grammatical form

is the logical form of P, Now, according to this view of analysis, this sentence S, exhibits the

true logical form of S in the sense that it is in virtue of having this form that S may behave in

the logical way that it is so licensed. Moreover, S expresses the proposition P in virtue of the

fact that S, does, for S is really a kind of disguised abbreviation for S, As one might guess, S,

is supposed to be a formula belonging to the formal language of Principia", '"

'0Russell's view of analysis originates from Moore, Indeed, except for a few complications,
it is Moore's view of analysis that is articulated in Principles. However, Russell extends and
modifies Moore's view considerably in various papers after 1903, His "On Denoting" is
significant in this respect because in it, he introduces the important notions of incomplete
symbol and contextual definition,

'"Here, I am distinguishing sentences according to some suitable notion of type.

'-I should note here that Russell considers every formula of Principia's formal language to
exhibit its logical form in a completely perspicuous way and, for this reason, he calls it a
logically perfect language. Cf, The Philosophy of Logical Atomism (LA), (La Salle, Illinois:
Open Court, 1985), p, 58, Russell also notes there that we may add whatever nonlogical
particles we may like -- as long as we do not modify the syntax -- to Principia's formal
language without affecting its logical perfection.
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a result of this acquaintance.

To summarise the last few paragraphs, we have seen that Russell takes Principia's

formal language to be universal both in the sense that there is nothing which lies outside the

scope of Principia's variables and in the sense that any proposition which is expressible by

some means is expressible by some formula of Principia. These two aspects of how Russell

interprets Principia's formal language are to a certain extent at variance with contemporary

conceptions, Concerning the first aspect, some contemporary writers -- for instance, Dummett

and Parsons -- argue that it makes no sense to conceive of the variables of any formal system as

enjoying a completely unrestricted domain of discourse, " Others -- most notably Boolos,

Cartwright, and Quine -- argue that this possibility makes perfect sense." Concerning the

second aspect, perhaps no one today takes the formal language of any formal system to be a

universal framework inside of which any proposition that is expressible by any means is also

expressible. However, there are contemporary twists to this theme, Quine, for instance,

recommends on methodological grounds that our discourse be regimented according to the

strictures of first-order logic and claims that it makes sense to discuss what the ontological

commitments of a given discourse are only after such a regimentation of the discourse in

question is achieved, " When discussing "radical interpretation," Davidson says that first-order

logic provides the most useful structure in terms of which a language that is radically different

'NM. Dummett, Frege: Philosophy ofLanguage, 2nd edn, (Cambridge, Mass,; HUP, 1981),
ch. 16. C, Parsons, "Sets and Classes" in Mathematics in Philosophy, (Ithaca, New York:
Comrnell University Press, 1983).

'AG. Boolos, "Whence the Contradiction?" in Aristotelian Society, Suppl. vol. 67 (1993) pp.
213-234. R Cartwright, "Speaking of Everything", 1989 ASL lecture. WV. Quine, "On What
There Is", "Existence and Quantification", among others,

9 Cf' "On What There Is", "Existence and Quantification", Word and Object: chs, 3 and 5,
among others,
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Russell first puts forth this stronger position with respect to mathematical discourse, In

the opening pages of Principles, he claims that sentences that express mathematical

propositions really express propositions of pure logic, " Such a claim, indeed, follows from his

adherence to logicism, Later, when Russell directs his attention to epistemological concerns, he

makes a claim that is somewhat similar about sentences that express material-object

propositions and propositions of natural science. That is, he claims that such sentences are

really disguised abbreviations for sentences about sense-data and logical constructions of sense-

data, In "The Relation of Sense-Data to Physics"(1914),' 4 he hints at how such disabbreviation

may be carried out and, in Our Knowledge of the External World(1914, the Lowell Lectures),

he carries it out in some detail, "

Concerning the claim that a sentence S of ordinary language may express a proposition

P only in virtue of the fact that it is an abbreviation of some formula SP of Principia and that S,

expresses P, one may ask in virtue of what does S, express P. Russell answers this question by

appealing to his celebrated notion of acquaintance, He says in "Knowledge by Acquaintance

and Knowledge by Description"(1910), and elsewhere, that a disabbreviated sentence such as

S, expresses its proposition P in virtue of the fact that we are acquainted with the constituents

of P,'6 Presumably, he considers the particles of such a sentence to mean these constituents as

'3Here, as elsewhere, Russell actually talks at the level of propositions and not at the level of
their linguistic vehicles. My discussion in the following, therefore, is somewhat of a
reconstruction.

'4"The Relation of Sense-Data to Physics" in Mysticism and Logic, pp, 108-131.

"Camrnap carries this disabbreviation project even further in his Der Logische Au/bau der
Welt (1928),

'6According to his notion of acquaintance, the only items that we are acquainted with are
logical objects -- his indefinables of Principles -- and sense-data,
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from one's home language should be regimented in order to interpret it.20

I now move on to discuss the second part of the examination of how Russell takes the

formal system presented in Principia to be interpreted -- that is, the part having to do with how

he interprets the formal system's formal calculus. In this part, I first consider how Russell

interprets the formal calculus's deductions and then consider how he interprets its theorems.

There are three points to note about how Russell interprets the deductions in

Principia.z Recall that a deduction belonging to Principia's formal calculus is a purely formal

object, More precisely, if D is a deduction firom a set of premises P to a conclusion C, then D

is simply a sequence of formulae that relate to P, C, and each other in certain effectively

specifiable ways, where these are described by the formal calculus's rules of inference, 22 Recall

also that the formulae of Principia enjoy a fixed interpretation in the sense that any such

formula expresses a particular proposition. It follows from these considerations that for any

deduction D, there exists a sequence of propositions A such that to any formula F of D

there corresponds in a one-to-one fashion a proposition Q of A which F expresses, For the

purpose of exposition, we may call any such sequence of propositions A that so corresponds to

some deduction D of the formal calculus a PM-argument (Principia-argument), The first of

the three points about how Russell interprets Principia's deductions, then, is simply that he

2 Cf, "Radical Interpretation" in Thuth and Interpretation, (Oxford: Clarendon, 1985),
211t should be noted that, in the following, I distinguish carefully between various formal or

syntactic items and their semantic analogues. Russell in his writing is not always so careful.
For the most part, he only talks explicitly about the semantic items, although he clearly
presupposes an intimate connection between these and their formal analogues, Thus, where I
distinguish between deduction, qua formal object, and argument, qua semantic analogue,
Russell uses the word "deduction" to refer to both.

22Among these rules of inference are modus ponens, substitution, definitional interchange,
and universal generalisation.
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takes any such PM-argument to be logically valid. In saying this, I should note here that Russell

does not construe logical validity in the way that Tarski later famously explicated this

notion. 2324 Rather, Russell construes logical validity to mean something like validity in virtue of

general reasoning, 2• This construal is, of course, vague and unsatisfactory; but the point is that

Russell takes the traditional notion of logical validity to be an important and completely

legitimate notion that is perhaps primitive in the sense of not being definable or explicable in

simpler terms.

The second point about how Russell interprets Principia's deductions is that he holds

the following contemporary-sounding position: not only is every PM-argument logically valid,

but insofar as any argument expressed in ordinary language is logically valid, it is so in virtue of

there being a PM-argument which corresponds to it.'6 More precisely, where P is a set of

premises expressed by ordinary language sentences, C is a putative conclusion from P

expressed by an ordinary langtiage sentence, and B is an argument from P to C consisting of

propositions expressed by ordinary language sentences, then insofar as B is logically valid, there

exists a PM-argument from P to C expressed by formulae of Principia. It follows from this

position that an argument is logically valid iff it is a PM-argument or corresponds to a PM-

23Tarski, Alfred. "On the Concept of Logical Consequence" 1936, Cf. W. Hodge's "Truth in
a Structure".

24However, supposedly Bolzano had already articulated a similar explication,

"Define a truth-preserving relation as follows, A relation R between propositions p,, p?, ...,
p,, is truth-preserving whenever: R holds of p,, p2, ,,., p, iff both (a) R holds in virtue of the
logical structures which propositions p,, p2, ..,, p, exhibit and (b) if R(p,,p,, ...,pn) and p,, p-, ,1 .,
P,., are all true, then p, must be true also, It is perhaps possible to say that Russell takes
an argument to be logically valid when and only when truth-preserving relations hold in suitable
ways between various propositions of the argument.

6Note the similarity between this position and the position described above concerning the
possibility of there being an ordinary language sentence expressing a proposition,
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argument. Since something is a PM-argument iff there is a corresponding deduction in the

formal calculus, it also follows that any argument is logically valid iff it has a corresponding

deduction in the calculus. In this respect, although Russell takes the notion of logical validity to

be indefinable, he nevertheless gives a characterisation of the notion in proof-theoretic terms,

Russell's adherence to this position is most apparent when he advances the claim that

all correct mathematical reasoning can be formalised in Principia's formal calculus. Indeed,

this claim is entailed by his claim of logicism, He writes in a number of places that where

mathematicians have, in fact, employed methods that are not amenable to such formalisation,

these methods have led to results which, although they may be obvious, do notfollow from

their premises. For instance, in 1901 he writes this about the use of figures in geometry:

In Geometry, as in other parts of mathematics, Peano and his disciples
have done work of the very greatest merit as regards principles. Formerly it
was held by philosophers and mathematicians alike that the proofs in Geometry
depended on the figure; nowadays, this is known to be false. In the best books
there are no figures at all. The reasoning proceeds by the strict rules of formal
logic from a set of axioms laid down to begin with. If a figure is used, all sorts
of things seem obviously to follow, which no formal reasoning can prove from
the explicit axioms, and which, as a matter of fact, are only accepted because
they are obvious. 27

The rigid methods employed by modem geometers have deposed
Euclid from his pinnacle of correctness. ,,. Countless errors are involved in his
first eight propositions, That is to say, not only is it doubtful whether his
axioms are true, which is a comparatively trivial matter, but it is certain that his
propositions do notfollow for the axioms which he enunciates. A vastly greater
number of axioms, which Euclid unconsciously employs, are required for the
proof of his propositions. Even the first proposition of all, where he constructs
an equilateral triangle on a given base, he uses two circles which are assumed
to intersect, But no explicit axiom assures us that they do so, and in some kinds
of spaces they do not always intersect, ... Thus Euclid fails entirely to prove his
point in the very first proposition,28

'7"Mathematics and the Metaphysicians," (MM) in Mysticism and Logic, Bames and Noble,
p, 72,

28ibid, pp. 72-3, my italics,
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Moreover, Russell writes that not only has the employment of methods that are not amenable to

formalisation led to results that do not follow, but such employment has actually led to

problematic and even false results. He cites the foundational problems of the infinitesimal

calculus as an instance. In the same essay, in a somewhat later passage, he also claims that

formalisation is responsible for resolving these problems:

The most remarkable result of modem methods in mathematics is the
importance of symbolic logic and of rigid formalism. Mathematicians, under
the influence of Weierstrass, have shown in modem times a care for accuracy,
and an aversion to slipshod reasoning, such as had not been known among
them previously since the time of the Greeks. The great inventions of the
seventeenth century -- Analytic Geometry and the Infinitesimal Calculus --
were so fruitful in new results that mathematicians had neither time nor
inclination to examine their foundations. Philosophers, who should have taken
up the task, had too little mathematical ability to invent the new branches of
mathematics which have now been found necessary for any adequate
discussion. Thus mathematicians were only awakened from their'dogmatic
slumbers' when Weierstrass and his followers showed that many of their most
cherished propositions are in general false. Macaulay, contrasting the certainty
of mathematics with the uncertainty of philosophy, asks who ever heard of a
reaction against Taylor's theorem? If he had lived now, he himself might have
heard such a reaction, for this is precisely one of the theorems which modem
investigations have overthrown. Such rude shocks to mathematical faith have
produced that love of formalism which appears, to those who are ignorant of its
motive, to be mere outrageous pedantry. 29

It should be mentioned that it is only because of the success of the new logic that

Russell can plausibly adhere to the stronger position above described. Until 1879, there

remained many kinds of argument in mathematics that resisted formalisation according to the

existing principles of logic yet that were taken to be instances of correct reasoning. With the

new logic, however, one could show that any of the inferential steps of these recalcitrant kinds

of argument could be understood to be composed of several "smaller" inferential steps such

that each of these is effectively described by one of the new logic's few rules of inference. Both

29ibid, p. 73, my italics.
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Russell and Frege were very aware of this fact:

If we try to list all of the laws governing the inference which occur when
arguments are conducted in the usual way, we find an almost unsurveyable
multitude which apparently has no precise limits. The reason for this,
obviously, is that these inferences are composed of simpler ones."30

The third point about how Russell interprets Principia's deductions -- which is closely

related to the above discussion -- is that he takes any PM-argument to be "gapless" in the sense

that Frege takes his formalised arguments to be. Thus, Russell writes in the Preface to

Principia:

We have found it necessary to give very full proofs, ,,.-rause otherwise
it is scarcely possible to see what hypotheses are really required, or whether our
results follow from our explicit premisses. (It must be remembered that we are
not affirming merely that such and such propositions are true, but also that the
axioms stated by us are sufficient to prove them.) At the same time, though full
proofs are necessary for the avoidance of errors, and for convincing those who
may feel doubtful as to our correctness, yet the proofs of propositions may
usually be omitted by the reader who ...['rincipia, p. vil

Elsewhere, Russell makes it clear that for a proof to be full in the above sense, it must be

gapless. Discussing the importance of formal systems, he writes:

It is not easy for the lay mind to realize the importance of symbolism in
discussing the foundations of mathematics, .. The fact is that symbolism is
useful because it makes things difficult ... What we wish to know is, what can
be deduced from what, Now, in the beginnings, everything is self-evident; and
it is very hard to see whether one self-evident proposition follows from another
or not. Obviousness is always the enemy of correctness, Hence we invent
some new and difficult symbolism, in which nothing seems obvious, Then we
set up certain rules for operating on the symbols, and the whole thing becomes
mechanical, In this way we find out what must be taken as premise and what
can be demonstrated or defined. 3'

3oFrege, "Ober die Begriffsschrift des Herm Peano und meine eigene," Berichte ilber die
Verhandlungen der Kbniglich Sachsischen Gesellschaften der Wissenschaften zu Leipzig,
Mathematischephysische Classe, 48 (1897). Translated as "On Mr. Peano's Conceptual
Notation and My Own," in Collected Papers, p. 235,

"MM, p. 61, my italics,
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In this respect, we may say, roughly speaking, that a given argument from a premise set

P to a conclusion C is gapless if and only if no extraneous premise -- that is, no proposition not

belonging to P, where P is taken to be effectively decidable -- is appealed to in the course of the

argument to C, in the way, for instance, that Kant insists -- when he talks about "construction of

concepts" in his first Critique -- that intuition must be appealed to at any given step of a

mathematical proof. Now, that any PM-argument is in this sense gapless actually follows from

the specifications of what it is to be a PM-argument and what it is to be a premise to such an

argument For since the set of premises in a PM-argument is effectively decidable and since a

proposition can occur in a PM-argument only if it relates to previously occurring propositions

and/or propositions belonging to the argument's premise set in an effectively decidable way,

there can be no tacit appeal to an extraneous premise in any interesting sense,

We now move on to consider how Russell interprets the theorems of Principia's formal

calculus, Recall that a theorem is a formula of Principia's formal language which is the

conclusion of a deduction whose premise set is empty, It is perhaps unnecessary to say that

Russell takes the propositions expressed by Principia's theorems to be logical truths and that he

intends the notion of theoremhood to capture proof-theoretically the notion of logical truth, In

order to understand what this means, however, we must ask how he otherwise characterises the

notion of logical truth. In his Introduction to the second edition of Principles in 1937 and

elsewhere, Russell states two relevant characteristics;

A logical [truth] must have certain characteristics which can be defined; it must
have complete generality, in the sense that it mentions no particular thing or
quality; and it must be true in virtue of its form.
[Principles, p. xii]

For a proposition to mention no particular thing or quality, Russell claims that it must consist of

nothing but variables and logical constants.323" ' Unfortunately, he does not have a substantive
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theory of what it is to be a variable or a logical constant (he confesses this in his 1937

Introduction), so it is unclear how we are to explain this first characteristic of logical truth, 4

Concerning the second characteristic, Russell writes;

I confess, however, that I am unable to give any clear account of what is meant
by saying that a proposition is "true in virtue of its form."[Principles, p, xii]

Notwithstanding this remark, Russell clearly has some intuitive notion in mind, for he claims

shortly before the remark that it is on the basis of this characteristic that the axioms of choice

and infinity are or are not logical truths. Like the first characteristic, however, it is unclear how

we should spell out this second one. In this light, it is difficult for us to say in virtue of what the

propositions expressed by the theorems of Principia are supposed to be logical truths.

Let us summarise what we have seen about how Russell interprets the formal calculus

of Principia, Concerning its formal deductions, we have seen that Russell takes any such

deduction to express a gapless, logically valid PM-argument and, moreover, that insofar as any

argument is logically valid, it has a corresponding PM-argument, In this respect, Principia's

formal calculus may be taken to capture the notion of logical validity proof-theoretically,

Concerning the formal calculus's theorems, we have seen that Russell takes these to express

"Principles, §§ 3, 12, etc,; Principia, p. 93,

"As we shall see when we examine the Principles, Russell treats these items as actual
objects in the realm of being, not as linguistic particles.

34Notwithstanding this unclarity, some have drawn interesting consequences from this claim,
Peter Hylton, in his Russell, Idealism, and the Emergence ofAnalytic Philosophy (RIAP),
writes:

A consequence of this is that if, for some number n, there are exactly n entities,
then it is a truth of logic that there are exactly n entities. (We can say that there
are exactly n entities using only variables and logical constants ,.. [p. 200, note
39]

This is a curious consequence given that Russell never takes the axiom of infinity to be a logical
truth. See the comment about the second characteristic.
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logical truths and that he intends the calculus proof-theoretically to capture the notion of logical

truth. To this extent, it is clear that there are substantive differences between Russell's

conception of Principia's deductions and theorems and the modem conception of these items.

I mention only the most notable. Whereas Russell takes any Principia deduction to express a

PM-argument, in modem terms, a deduction is a de-interpreted schema that may be appealed

to as a finitary means for determining whether or not the explicated, model-theoretic relation of

logical consequence holds between certain formulae -- more precisely, between a certain set of

formulae and a distinguished formula. Also, whereas Russell takes any Principia theorem to

express a proposition that is logically true, the modem conception treats any such theorem also

as a de-interpreted schema that satisfies the notion of logical truth, again explicated model-

theoretically. Note that since Russell's notion of logical truth and the model-theoretic one apply

to different kinds of object, they themselves must certainly be different. Clearly, such

differences stem partly from Russell's taking Principia's formal language to have a fixed

interpretation.

In an effort to make clear the significance of Russell's aim in Principia of presenting an

interpreted formal system, I have in this section examined what he takes a formal system to be,

and how he considers it to be interpreted, To repeat, Russell takes a formal system to be more

or less the same formal object that we take it to be. But he considers its formal language to

have a fixed and universal interpretation, its formal deductions to express logically valid

arguments, and its theorems to express logical truths. Considering the nature of each of these

claims, it is easy to appreciate the significance Russell may attach to the aim in question."

Before moving on to discuss the second aim that Russell has in Principia, I should

"Throughout the rest of this work, I shall use the expressions "logical system" and "logic" to
mean interpreted formal system as described in this section.
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discuss one inference that some scholars -- for instance, Goldfarb, Hylton, and Ricketts -- have

made from the premise that Russell takes Principia's formal language to be universal in the

above described senses.'3 From this premise, they have inferred that for Russell (and Frege)

there is no room for metatheoretic considerations about logic in the sense that there is no

legitimate stance from which to frame such considerations. One may, perhaps, explain their

inference as follows. Principia's formal language is universal in the sense that anything that can

be expressed by some means must be expressible by some formula of that language. Thus,

there is no "stance" outside that language from which to express anything in the sense that there

can be no proposition which is not already expressible from inside the language, From this, it

should follow that there can be no proposition about the language, the formal system, or logic

in general -- that is, there can be no metalogical propositions at all.

The basis for this inference appears questionable. It seems to be possible to suppose

the premise about the universality of Principia's formal language without supposing the

conclusion by merely supposing that the universal formal language be able to talk about itself

and other aspects of Principia's formal system. At least two considerations about Russell

cohere well with this supposition. In Principles, and elsewhere, Russell subscribes to a

noncategorial conception of logic, according to which the variables of quantification enjoy a

completely unrestricted range over which to vary, Also, Russell considers and uses forms of

self-referential reasoning, for instance, in the generation of the semantic paradoxes and in the

generation of the propositional-function version of his own paradox -- we shall look at these in

36See W. Goldfarb, "Logic in the Twenties: The Nature of the Quantifier", in Journal of
Symbolic Logic 44 (1979) p. 353, "Russell's Reasons for Ramification" in Savage and
Anderson, p. 27; Hylton, RIAP, p. 202-3; T. Ricketts, "Frege, the Tactatus and the
Logocentric Predicament", Nous 19 (1985) pp, 4-9, Also, cf J. van Heijenoort, "Logic as
Calculus and Logic as Language" in Synthese 17 (1967), pp, 324-30,
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the next section,

In questioning the basis of this inference, one must concede that Russell does make

various remarks which independently offer some support to the conclusion. The most

celebrated remark of this kind is to be found in §j17 of Principles:

it should be observed that the method of supposing an axionl false, and
deducing the consequences of this assumption, which has been found
admirable in such cases as the axiom of parallels, is here not universally
available, For all our axioms are principles of deduction; and if they are true,
the consequences which appear to follow from the employment of an opposite
principle will not really follow, so that arguments from the supposition of the
falsity of an axiom are here subject to special fallacies,"37

Moreover, it would be somewhat anachronistic to ascribe Russell a substantial metatheory

since the distinction between object-theory and metatheory was only made clear in a

mathematically precise way by Hilbert and then Tarski some time after Russell had stopped

working on logic.

In the light of all of these considerations, I shall, as an exegetical rule of thumb, read

Russell as in general working at the object-theory level. I shall, however, take a neutral stand,

to the extent that this is possible, on whether or not Russell can seriously entertain

metatheoretic considerations,

2, The Solution of the Paradoxes

Another of Russell's aims in Principia Mathematica is that its logical system should provide a

unitary solution to his and the other modem paradoxes, In order to understand the significance

of this aim, one must see both Russell's reasons for thinking that the logical system per se

should provide their solution and his reasons for thinking that their solution should be unitary, I

"7See also Principia, p. 91.
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examine Russell's reasons in the following. Toward this end, I first review all of the relevant

paradoxes that exercised his attention in the decade in which he was working on Principia.

(a) The Paradoxes3"

In 1897, Cesare Burali-Forti discovered the first of the modem paradoxes.39 The argument to

this paradox is rather technical; it appeals to the resources developed within Cantor's theory of

the transfinite, An informal version of the argument to the paradox goes as follows: Let x be

any class of ordinal numbers. Then x is well-ordered by the notion of magnitude particular to

the ordinal numbers in question. Since any well-ordered class has an order-type represented by

some ordinal number, x has an order-type represented by some ordinal number a, By a simple

derivation, it can be shown that this a cannmot belong to x, Now, consider the class On of all

ordinal numbers, Since On is well-ordered, it has some ordinal number p representing its

order-type. As in the case with a, $p cannot belong to On. Contradiction,

In 1899, Cantor discovered a simpler paradox. Like the argument to Burali-Forti's

paradox, the argument to this paradox appeals to resources developed within his theory of the

transfinite, although these resources concern cardinal rather than ordinal numbers. An informal

version of the argument to the paradox goes as follows: According to Cantor's theorem, for

any class x, the class of all its subclasses 9(x) -- its power-class -- has a cardinality strictly

greater than the cardinality of x, where the cardinality of a class z is in this sense strictly greater

"Those who are familiar with the modern paradoxes may jump ahead to the discussion of
Russell's less well known propositional function paradox and proposition paradox -- these are,
respectively, the fourth and fifth paradoxes examined here.

391n his Cantorian Set Theory and the Limitation of Size (Oxford: Clarendon Press, 1984),
Michael Hallett points out that Cantor had known of this paradox as early as 1895, See pp, 74,
169.
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than that of a class y iff there is a one-to-one map from y into z but no onto map from y to z,4"

Now, consider the universal class V -- that is, the class of all classes. By Cantor's theorem, the

cardinality of P(V) is strictly greater than that of V. Thus, there is no onto map from V to

P(V). Accordingly, there must be at least one class in P(V) which is not in V, the class of all

classes,'"

In May of 1901, Russell discovered the simplest of all the modem paradoxes,4 ""

Unlike the arguments to the former two paradoxes, the argument to this one does not appeal to

any of the resources of Cantor's theory of the transfi-nite; indeed, it is very easily stated, Russell

was led to the paradox by examining Cantor's argument to his own paradox. In this

examination, he came to consider that a class sometimes is, and sometimes is not, a member of

itself. So, for example, the class of teaspoons is not a member of itself since it is not a

teaspoon, whereas the class of non-teaspoons is a member of itself since it is a non-teaspoon,

Call a class that is a member of itself self-membered and a class that is not non-self-membered.

Now, consider the class R of all non-self-membered classes, Query: is R non-self-membered?

Suppose that it is; that is, suppose that RitR Then R satisfies the condition for belonging to

itself. So RER. Conversely, suppose that R is self-membered, so RER. Then, R must satisfy

the condition for belonging to itself, viz., being non-self-membered. So ReR. Hence, ReR iff

40 0ne could define ' strictly-greater-than' as follows: the cardinality of a class z is strictly
greater than that of a class y iff there is a map from z onto y but no such map is one-to-one.
However, the axiom of choice is required to prove that this definition is equivalent to the
definition given above.

'Care is required to state this argument formally,

'"In his autobiography and in his My Philosophical Development (henceforth, MPD),
Russell writes that he discovered it in May; however, in his My Mental Development, he writes
that he discovered it in June.

"4Zermelo discovered this paradox independently in 1902,



33

ReR

This argument may be easily formalised in order to show precisely what is required in

order to obtain the contradiction, Crucially, assume a principle of unrestricted comprehension

governing the existence of classes: V*HyVx(xEy ,- q(x)) (i), Here, the variable ' 4' ranges

over propositional functions, From (i), infer 3yVx(xey -xix) by universally instantiating

'9[1]' with '[1][ll]'," Next, instantiate "y": Vx(xey -xix), Then instantiate "x"' yey -yey.

Thus, only four interesting items are required to obtain the contradiction: the comprehension

principle, the well-formedness of'xEx', universal instantiation, and existential instantiation. 5

In §§96 and 101 of Principles, Russell discusses another paradox whose argument

parallels the argument to his class paradox, This argument, however, appeals to propositional

functions rather than to classes, The argument may be obtained by replacing in the former

argument references to classes by references to monadic propositional functions and references

to membership by references to satisfaction. Briefly, call a monadic propositional function that

applies to itself self-satisfying and one that does not non-self-satisfying, Now, consider the

monadic propositional function Q which applies to all and only non-self-satisfying monadic

propositional functions, Query: Does Q satisfy itself? Answer: Q satisfies itself iff it does not.

This argument may be put more formally as follows. Assume a principle of

unrestricted comprehension governing the existence of monadic propositional functions:

44Quine's circled numerals are employed here in order correctly to substitute a higher-order
variable with an open formula. See Quine's Elementary Logic, (Cambridge Massachusetts:
HUP, 1980) §§ 40-42.

"Note that the rule of universal instantiation appealed to here in order to replace the
propositional function variable by an open formula is not as ontologically innocent as it might at
first appear to be, In particular, it entails strong existence assumptions, among which are
principles of comprehension. See Quine, Set Theory and its Logic, pp. 257-8.
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Vi3yVx(y(x) q- (x)), where the variable' ' ranges over propositional functions and the

variables 'x' and 'y' range over monadic propositional functions, Infer ByVx(y(x) - --x(x)) by

universally instantiating ' [lJ]' with '[l1([1])'. Instantiate 'y': Vx(y(x) .- -x(x)). Instantiate 'x':

y(y)) " -y(y). Thus, nothing interesting is required to obtain the contradiction but a

comprehension principle, the well-formedness of'-x(x)', and universal and existential

instantiation,

In §500 of Principles, Russell discusses yet another paradox which is similar to his

class and propositional function paradoxes but which focuses on propositions. Briefly,

consider that for any class M of propositions, there is a proposition which asserts that every

member of M is true, Call such a proposition a c-proposition ('c' for class). Now, some c-

propositions are members of the class of propositions which they assert to be true and others

are not. Call the former c-propositions sc-propositions (' s' for self) and the latter c-

propositions non-sc-propositions. Consider the class W of all and only non-sc-propositions.

There is a c-proposition p which asserts that every member of W is true, Query: peW?

Answer: peW iff pW, Formalising this argument shows that the only interesting notions

which it employs are those of class, proposition, and truth, and that the only interesting

principles that it appeals to are unrestricted comprehension governing class existence and an

existence principle for propositions,4"

In 1905, Konig discovered a paradox that involves the notion of specifiability --

roughly speaking, something is specifiable iff there is a finite sequence of symbols that uniquely

picks it out, The argument to the paradox is simple: Since there can be only No finite

sequences of symbols, there can be only No ordinal numbers that are specifiable. However,

46Those who are familiar with the semantic paradoxes may jump ahead a few pages to the
discussion of Ramsey,
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Finally, in 1907, Poincard suggested that the ancient liar paradox -- the Epimenides

paradox -- should be considered among these others." Its simplest argument is the following;

Consider the sentence "I am lying". Query: If it is uttered in an 'appropriate' context, is it true

or false? Answer: It is true iff it is false.

Although we have only seen informal arguments to the last five paradoxes, formal

analogues of these arguments can be given, albeit with some effort. These analogues show

that the most interesting principles that are appealed to by them are the principles that govern

the notions of specification, application and truth, Generally, these principles are either

disquotational in nature, or entail others that are,

Before moving on to subsection (b), I should note here that generally today, Burali-

Forti's paradox, Cantor's paradox, and Russell's class paradox are called set-theoretic

paradoxes because their arguments employ the notion of class and appeal to principles that

govem this notion; Kinig's paradox, Richard's paradox, Berry's paradox, and the liar paradox

are called semantic paradoxes because their arguments employ semantic notions like

specifiability, applicability, and truth and appeal to principles that govem these notions. Peano

first drew the distinction between these two groups of paradoxes in 1906,"9 but Ramsey is the

one who is recognised for arguing for its importance, which he did in his 1923 "Foundations of

Mathematics".,5 There, he writes;

[The set-theoretic paradoxes] involve only logical or mathematical terms such
as class and number, and show that there must be something wrong with

48"Les math6matiques et la logique", Revue de Mdtaphysique et de Morale, 1906, 14, p.
306.

'gRivista di Mat, 8 (1906), p, 157,
5O"Foundations of Mathematics" (henceforth, FM), in IFoundations, (Atlantic Highlands, NJ:

Humanities Press, 1978),

4
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there are certainly more than No ordinal numbers and, since the class of all ordinal numbers is

well-ordered, there must be a least ordinal number p that is not specifiable, Now, note that the

description "the least ordinal number that is not specifiable" uniquely picks out P. So, p is

specifiable.

In the same year, Richard discovered a paradox similar to Konig's. Briefly, consider

the class E of all decimals between 0 and 1 that are specifiable. E has at most No many

elements and, thus, these must be listable, Pick some such list L. Now, specify a number N via

the Cante- diagonal method: if x is the n" decimal in the list L and the numeral in its n"

decimal place is i, then if the number denoted by i is less than 5, the numeral in N's n& decimal

place is '7'; otherwise, it is '2', Clearly, N is different from every decimal in E, Since N is a

specifiable decimal between 0 and 1, however, N must be an element of E,

Berry discovered another paradox concerning specifiability which has the merit of

restricting its attention to whole numbers,47 Informally, consider the class of all whole numbers

not specifiable in fewer than nineteen syllables. Since the number of nineteen-syllable

expressions formed from a finite alphabet is finite, this class must be non-empty, Moreover,

since the whole numbers are well-ordered, there must be a least member j of the class. In this

respect, "the least whole number not nameable in fewer than nineteen syllables" specifies or

names j, but this description has fewer than ninoteen syllables.

In 1907, Grelling discovered a paradox that concerns predicate application. He noted

that some predicates apply to themselves while others do not. The predicate "polysyllabic"

applies to itself whereas the predicate "monosyllabic" do not. Call a predicate that does not

apply to itselfheterological. Query: Is "heterological" heterological? Answer: It is iff it is not.

47Russell reports this paradox in his 1906 "On ' Insolubilia' and their Solution in Symbolic
Logic" (henceforth, "On' Insolubilia'") in EA, p, 210,
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Ramsey in his FM, On the face of it, they do not clearly fall under either of the two groups that

Ramsey describes. I shall address this matter in subsection (b). For the moment, call these

paradoxes mixed paradoxes.

(b) The Nature of the Solution

From the point that Russell first committed himself to finding a solution to the paradoxes, he

held two notable positions on thfle nature of such a solution." First, the paradoxes 'arise' from

"Russell's commitment to the aim of finding a solution to the paradoxes took some time to
develop, To begin with, neither Burali-Forti's nor Cantor's paradox spawned any serious
reaction in general, Because these were both results derived from principles belonging to
Cantor's recently developed transfinite class theory, they were considered to be inconsequential.
Indeed, some mathematicians who looked askance at Cantor's research actually welcomed the
paradoxes. In his MM, Russell mentions Cantor's paradox in passing. He writes something
curious indicating that, like most, he did not treat it seriously:

There is a greatest of all infinite numbers, which is the number of all things
altogether, of every sort and kind. It is obvious that there cannot be a greater
number than this, because, if everything has been taken, there is nothing left to
add, Cantor has a proof that there is no greatest number, and if this proof were
valid, the contradictions of infinity would reappear in sublimated form. But in
this one point, the master has been guilty of a very subtle fallacy, which I hope
to explain in some future work,[MM, p, 69]

Ironically, Russell discovered his class paradox while he was examining the proof of Cantor's
paradox, His initial reaction to this discovery was similar to his reaction to Cantor's paradox:

At first I thought there must be some trivial error in my reasoning, I inspected
each step under a logical microscope, but I could not discover anything
wrong.[MPD, p. 58,]
Soon, however, Russell and many others realised that

his paradox could not be as easily dismissed as Cantor's and Burali-Forti's paradox. They took
the class paradox to show that some of the received principles about the notions of class and
even predication were mistaken. Thus, Frege eventually gave up his logicist project altogether.
Dedekind temporarily stopped the publication of his celebrated "Was Sind und Was Sollen die
Zahlen?" because of its uncritical appeal to the notion of class, Several mathematicians who
had begun to accept class theory as a legitimate mathematical discipline and, in fact, had begun
to contribute to it now rejected it -- Poincar6 was among these.

In his 1903 Principks, Russell manifested a disquietude over his paradox as well as a
sense of commitment to finding its solution. Although no definite solution is offered in the
book, much of it is devoted to discussing the paradox and its possible solution. It is noteworthy
that the book ends with the following exhortation:

What a complete solution of the difficulty may be, I have not succeeded in
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our logic or mathematics. ... [The semantic paradoxes] are not purely logical,
and cannot be stated in logical terms alone; for they all contain some reference
to thought, language, or symbolism, which are not formal but empirical terms,
So they may be due not to faulty logic or mathematics, but to faulty ideas
concerning thought and language.[FM, pp. 171-2]

According to Ramsey, therefore, whereas the set-theoretic paradoxes are solved by correcting

our logic, the semantic paradoxes are solved by changing the empirical assumptions (' ideas') --

presumably belonging to an empirical theory which treats of the semantic notions -- that give

rise to them.

As is well-known, Ramsey's purpose in FM is to criticise Russell's solution to the

paradoxes, viz., his ramified t!-eory of types. Towards this end, Ramsey complained that

Russell did not respect the import that he attributed to Peano's distinction. As a result of

Ramsey's remarks, many have thought that Russell failed even to recognise the distinction,

However, Russell certainly did recognise it and he vividly illustrates such recognition in his "On

'Insolubilia'", aler discussing a tentative solution -- his 'Substitutional Theory' -- to the set-

theoretic paradoxes." There, Russell writes:

The above doctrine solves, so far as I can discover, all the paradoxes
concerning classes and relations; but in order to solve the Epimenides we seem
to need a similar doctrine as regards propositions, ["On 'Insolubilia"', p. 204.]1

According to Russell, therefore, some of the paradoxes crucially employ the notions of class

and relation and others employ the notions of proposition and propositional function. Contrary

to Ramsey, however, Russell does not take this consideration to be relevant to the paradoxes'

solution for -- as we shall see in subsection (b) -- he has several good reasons for not doing so.

I have not yet said anything about how Rus~: ,ll's propositional function paradox and his

proposition paradox are to be classified among the other paradoxes mentioned above, nor does

"Cf. Warren Goldfarb's "Russell's Reasons for Ramification", p. 28.
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'logic' and, thus, their solution must consist in logic's reform. Secondly, all of the paradoxes

arise from the same error -- for some notion of sameness of error -- and, so, their solution must

be unitary. We shall look at why Russell held these two positions in what follows.

To begin with, the first position should be put more precisely, It may be read as saying

that, for each of the modem paradoxes, there is some definite mischaracterisation of the logical

system such that the argument to the paradox in question crucially appeals to it in some way. 53

Such a mischaracterisation of the logical system must consist in a mischaracterisation of at least

one of the system's elements -- that is, its rules of formation, axioms. rules of inference, etc.,

The solution to each paradox, therefore, must in turn consist in discovering which of these

elements is (are) mischaracterised and how it (they)) is (are) to be characterised correctly.

I shall explain why Russell holds this position in terms of the three groups of paradoxes

described in subsection (a), Thus, I shall first explain why he takes the set-theoretic paradoxes

to arise from logic, then I shall turn to consider the semantic paradoxes, and then, finally, the

mixed paradoxes.

Consider the set-theoretic paradoxes: Burali-Forti's, Cantor's, and Russell's class

paradox. Recall that these paradoxes all employ the notion of class and that their arguments all

appeal to principles governing the existence of classes, For this very reason, most

contemporary (post-Quinean) philosophers, contrary to Russell, deny that the set-theoretic

paradoxes arise from logic. According to these philosophers, the notion of class is not a logical

discovering; but as it affects the very foundations of reasoning, I earnestly
commend the study of it to the attention of all students of logic.[Principles,
§50o0,1

"3Each paradox is here construed as the relevant contradictory proposition that is the
conclusion of its argument. Thus, Russell's class paradox is the proposition
that the class of all non-self-membered classes both is and is not a member of itself,
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notion in the sense that there do not exist logical particles in terms of which the notion may be

expressed. Rather, the notion of class is a special mathematical notion peculiar to that domain

of discourse treated by set theory, in the way that the physical notion of momentum is peculiar

to that domain of discourse treated by mechanics,. In this respect, according to these

contemporary philosophers, the salient principles that govern the notion of class are not

principles of logic -- that is, roughly speaking, they are not logically valid truths essentially

involving the notion of class, Rather, they are merely deductively powerful, general truths

about cl"sses, As such, from the understanding that some of these sa!;Nlt principles -- such as

the principle of unrestricted comprehension -- are appealed to in an essential way by the

arguments to the set-theoretic paradoxes and that the other principles which are appealed to by

these arguments are uncontroversial, these contemporary philosophers concude that the set-

theoretic paradoxes arise from the relevant, salient, non-logical principles about classes and,

thus, take their solution to consist in the rejection of one or more of such principles.

Accordingly, they never take the set-theoretic paradoxes to bring logic itself into question."

By contrast, Russell explicitly takes the set-theoretic paradoxes to arise from logic -- or,

rather, from its mischaracterisation. Unlike the contemporary philosophers alluded above,

Russell early on considered the notion of class to be a logical notion in the sense that there exist

logical particles in terms of which the notion may be expressed." For instance, in Principles,

'4The notion of class, as such, lacks the quality of so-called topic-neutrality characteristic of
logical notions.

"It should be noted that some contemporary philosophers, most notably Quine, subscribe to
some form of holism and, thus, claim that there is no fact of the matter about which principles,
logical or non-logical, are responsible for the set-theoretic paradoxes,

'6Although Russell early on treats the notion of class as a logical notion in this sense, he is
not completely comfortable with the notion. As we shall see when we look at Principles, he
Derceives several difficulties with the notion many of which have nothing to do with the
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Russell writes that the notion of class may be expressed in terms of the logical constant ' e' --

for example, if 3x(xey), then y is a class -- as well as in terms of the logical constant 'such

that' and a variable that ranges over propositional functions." With respect to the latter case, he

writes;

The values of x which render a propositional function true 4bx true are like the
roots of an equation -- indeed the latter are a particular case of the former --
and we may consider all the values of x which are such that Ox is true. In
general, these values form a class, and in fact a class may be defined as all the
terms satisfying some propositional function.
[Principles, §23.]

In this respect, according to Russell, the salient principles that govern the notion of

class -- more precisely, the salient principles that govern the logical particles in terms of which

the notion of class may be expressed -- must be either axioms or theorems of the formal

calculus in the way that, for instance, the salient principles that govern the truth-functional

connectives are either axioms or theorems of the calculus, If this were not the case, the

calculus would not be able to determine whether or not arguments which crucially employ the

notion of class are logically valid, In Principles, Russell treats two such salient principles as

axioms; these two are (equivalent to) the standard principles of comprehension and

extensionality, "

In this light, it should be apparent why Russell takes the set-theoretic paradoxes to a

arise from a mischaracterisation of the logical system. First, consider his class paradox, The

paradoxes, As a result, Russell later dispenses with the notion of class altogether,

"7Russell considers the constants 'e' and 'such that' and the propositional variables to be
logical particles, briefly, because these particles are required for the logical system to have both
an adequate formal language and an adequate formal calculus in the senses described above in
section 1, Cf. §§ 12 and 13 of Principles,

"See §§23 and 24.
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formalisation of the argument to this paradox shows that only four interesting items are

required, o repeat, they are the comprehension principle, the well-formedness of ' xqx',

universal instantiation, and existential instantiation. The comprehension principle is an axiom

of the formal calculus. The well-formedness of'xEx' relies upon the primitive particles ' E, 'E',

and 'x', and the rules of formation. Universal and existential instantiation are two of the

calculus's rules of inference, Thus, nothing of interest but items belonging to elements of the

logical system are needed for the paradox, To solve Russell's class paradox, therefore, one

must discover which elements are mischaracterised and how these should be characterised

correctly. Secondly, consider :he paradoxes of Burali-Forti and Cantor, The formalisations of

the arguments to these paradoxes show that they also require these four items. To the extent

that one or more of these items is mischaracterised and must be recharacterised in order to

solve Russell's class paradox, such mischaracterisation may be taken to be responsible for these

other paradoxes as well and the concomitant recharacterisation may be taken, likewise, to solve

them. In this respect, the fact that they are concerned with transfinite ordinal and cardinal

numbers is not as relevant to why they occur as generally had first been thought.

We now look at the semantic paradoxes: K6nig's, Richard's, Berry's, Grelling's, and the

Epimenides paradox, Recall that these paradoxes employ semantic notions like specifiability,

applicability, and truth, and that their arguments appeal to special principles that govern these

notions, For this very reason, contrary to Russell, Ramsey -- and others sympathetic to his

analysis -- denies that the semantic paradoxes arise from a mischaracterisation of the logical

system. As we saw earlier, according to Ramsey, u, se semantic notions are not logical notions

but, rather, are theoretical notions that belong to some empirical theory of semantics. In this

respect, according to Ramsey, the salient principles that govern the semantic notions are not

principles of logic but, rather, are central principles of such a theory, As such, from the
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understanding that some of these salient principles are appealed to in an essential way by the

arguments to the semantic paradoxes and that the other principles which are appealed to by

these arguments are uncontroversial, Ramsey concludes that thse emantic paradoxes arise, not

from a mischaracterisation of the logical system, but from the relevant, salient, non-logical,

semantic principles. As such, he takes their solution to consist, roughly speaking, in the

rejection of one or more of such principles,

By contrast, Russell explicitly takes the semantic paradoxes to arise from a

mischaracterisation of the logical system. There are three reasons for his doing so, The first

reason is that, by his lights, the logical system itself contains substantive semantic principles and

these play a crucial role in the arguments to the semantic paradoxes. Note that this first reason

is not meant to be conclusive, but is only meant to jog the presupposition that logic must be

innocent in this matter, The reason follows from Russell's conception of the logical system as

discussed in section 1 above. Recall that, according to this conception, propositions and

propositional functions are essentially semantic items in the sense that they are what various

expressions of the formal language mean. Recall also that the logical system contains axioms,

rules of inference, and rules , ormation which crucially govern how such semantic it. vPs are

to behave. It follows from this that Russell takes the arguments to the semantic paradoxes

crucially to appeal to semantic principles of two kinds; principles that govern the semantic

notions of proposition and propositional function and principles that govern the semantic

notions of specifiability, applicability, and truth, Thus, the argument to the Epimenides

paradox appeals to principles about the notions of proposition and truth: the argument to

Grelling's paradox appeals to principles about the notions of propositional function and

applicability; and the arguments to the paradoxes of Konig, Richard, and Berry appeal to

principles about the notions of propositional function and specifiability.
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The second reason that Russell has for taking the semantic paradoxes to arise from a

mischaracterisation of the logical system is, roughly speaking, that Ramsey's own solutions to

the semantic paradoxes are problematic. Before we look at why such solutions are indeed

problematic, I should briefly review what Ramsey's specific solutions are,

In FM, Ramsey writes the following passage about Kdnig's, Richard's, and Berry's

paradox. 9 The passage presents his diagnosis of why these paradoxes arise and his solutions to

them.

All of these result from the obvious ambiguity of 'naming' a,- 'defining', The
name or definition is in each case a functional symbol which is only a name or
definition by meaning something. The sense in which it means must be made
precise by fixing its order; the name or definition involving all such names or
definitions will be of a higher order, and this removes the contradiction,[FM, p.
199,]

What Ramsey calls naming and defining I have been calling specifying, following Quine.6,

Roughly speaking, Ramsey here diagnoses that the paradoxes of K6nig, Richard, and Berry

arise from the presumption that there is a unitary semantic relation of specification and

corresponding principles that govern this relation when, actually, there are an infinite number of

such relations -- which may in a specific sense be seen to form a hierarchy -- as well as

corresponding principles that govern these. By his lights, therefore, the arguments to these

three paradoxes each turn on an equivocation between different specification relations and the

solution to any of these must consist in making the relevant equivocation apparent,

This gloss on the above cited passage must be put more precisely, To begin with,

consider what it is to say on a given occasion that x specifies y. Ramsey understandably takes it

"Although the following discussion focuses on these particular paradoxes, what is said
applies mutatis mutandis to the other semantic paradoxes as well.

"See Quine, Set Theory and its Logic, p. 242,
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to say that there is some description x constructed out of particles belonging to some fixed

vocabulary E such that y uniquely satisfies x. In this respect, the expression 'x specifies y' is

ambiguous and may be taken to mean on a given occasion one specification relation rather than

another, depending on which fixed vocabulary E is presupposed on that occasion. Ramsey

concludes from this consideration that, for any fixed vocabulary E0, there exists an entire

hierarchy of specification relations that is generated from E0. This hierarchy is described as

follows. At level (order) 0, there is the specification relation So such that xSoy iff x is a

description constructed exclusively out of particles belonging to the vocabulary Eo and y

uniquely satisfies x. At level 1, there is the specification relation S, such that xSy iffx is an

expression constructed exclusively out of particles belonging to E, = Qu {So} and y uniquely

satisfies x. Thus, JcE, and gS;S,, In this regard, an w-ordered sequence of specification

relations obtains such that, for all natural numbers i, j such that i-<j, if EI.Ej and xSy, then xSjy,

Thus, EJcEq~ .,. , and Sc1Tcc ... ,6" In addition to this hierarchy of specification

relations -- although Ramsey does not explicitly say so -- there must be principles that govern

such relations (these will presumably belong to his alleged, empirical theory of semantics),

Some of the principles will be disquotational in nature, having the form: Vy([F(y) A

Vz(F(z)-z=y)] -, cSiy), where F is a some open formula, c is a Gidel number of F, and Si is a

specification relation appropriate to the vocabulary involved in F,

It may be helpful at this point to illustrate how Ramsey exploits such a hierarchy to

block a given semantic paradox, Consider Konig's paradox. Recall its argument: Since there

can be only No finite sequences of symbols, there can be only No ordinal numbers which are

specifiable in terms of some fixed vocabulary Eo. However, there are certainly more than No

"6Here the relations Sj may be construed as sets of ordered-pairs.
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ordinal numbers and, since the class of ordinal numbers is well ordered, there must be a least

ordinal number p that is not specifiable. Hence, p is both not specifiable and specifiable,

Now, mimicking this reasoning, Ramsey would say that given some E,, there will be an entire

hierarchy of specification relations Si generated from E0 such that, for any i, there will be a least

ordinal number p that is not specifiable,, where the notion of specifiability, is defined in the

obvious way in terms of Si and Ej, However, in virtue of the nature of the hierarchy, p will be

specifiable,,1 , but since the notions of specifiability, and specifiability,,, are different, no

contradiction actually results.

Let us now turn to consider why Ramsey's solutions to the semantic paradoxes are

problematic. The reason is simple and is given by Goldfarb in his "Russell's Reasons for

Ramification" (henceforth, RRR):

Now Russell, I think, would ask why there is no relation that sums up (is the
union of) the different [specification] relations that Ramsey postulates. (Such a
union would reintroduce the paradox,)[RRR, p, 29.]

What Goldfarb in effect claims is that union operations render Ramsey's solutions ineffective by

reintroducing contradiction. The argument for this claim may not be entirely apparent upon

initial reflection and, so, in order to make good Russell's second reason, I shall try to spell it

out, In this effort, I shall focus without loss of generality on K6nig's paradox.

To begin with, Goldfarb's talk of the union of the specification relations presumes that

there is a function that enumerates these relations. This presumption, however, is consonant

with Ramsey's own discussion; thus, we may use the expression 'Spec' to designate this

function.62 In this regard, let S = uSpec(i), where iEo, so that xSy iff 3i(xSpec(i)y). Now,

since the domain of S is countably infinite and the ordinal numbers are not, ~p VxP-(xS P),

62Since the 'i' in ' S' above may be taken to be a schematic letter rather than a free variable,
the use of' Si' above does not presume any function that enumerates the specification relations,
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Since the ordinal numbers are well-ordered, there is a least such P -- call it P,, Thus,

(Vx--xSp•) A Vy [Vx-(xSy)-,y p)]} and for every ordinal number other than P(, this

statement is provably false. Hence, "[Vxj-xSy) A Vy(Vx-'xSy)-,y Žy)]" (ii) is provably true

only of P,. By disquotational principles, cS p3 , where' c' is the GOdel number of the open

formula (ii), So, 3x(xSP,). But Vx-'(xSp,). Contradiction, Note that, so long as the required

disquotational principles are available, this argument can be easily formalised.

The argument for Goldfarb's claim that union operations reintroduce contradiction

might appear to make two moves that are open to Ramsey to challenge: the specification of S

by an unrestricted union operation on the hierarchy of specification relations and the appeal to

disquotational principles in order to infer cS P ,. With respect to the union operation, Ramsey

could claim that, in the unrestricted form required to specify S, the operation is illegitimate and

that, once properly restricted, it is unable to specify S. However, it is unclear how Ramsey

could justify any such restriction, Since he does not take the semantic paradoxes to arise from

a mischaracterisation of the logical system, he cannot appeal to type considerations to justify the

restriction, The only other way of restricting the union operation is by restricting the axioms

that govern it, but this method is conspicuously ad hoc and the result is inconsonant with the

conception of the operation which the axioms are expected to embody. With respect to the

appeal to the disquotational principles, Ramsey could claim that, although for every i,

disquotational principles governing S, -- where 'SS' is a name and not a function expression --

must be available as part of an adequate semantic theory about specification, none of these

principles need treat the function sign 'Spec' -- recall that ' Spec(i)' designates the same

specification relation as ' S,'. Thus, none of these principles need treat the term ' S' defined in

terms of' Spec'. Hence, no disquotational principle need be available to guarantee the required

inference to cSp •. However, to the extent that Ramsey must admit the relation S, which 'sums
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up' all the specification relations occurring in the hierarchy, the refusal to admit a semantic

principle that governs S, qua semantic relation, would also appear conspicuously ad hoc.

In this light, Ramsey's challenges, at least in the form given hei,, ,.ould be unsuccessful,

At this point, one may conclude that, to the extent that the above argument to the claim

that union operations reintroduce contradiction is correct, Ramsey's solution to Konig's paradox

is problematic. One may conclude, further, that, to the extent that Ramsey's solution to this

paradox is typical of his solutions to all the other semantic paradoxes, his solutions to these are,

likewise, problematic. Thus, to that extent, Russell has reason for taking the semantic

paradoxes to a arise from a mischaracterisation of the logical system,

Before we look at Russell's third reason, I should address one question that one may

now be prompted to ask. One might think that, even if Ramsey's solutions to the semantic

paradoxes are problematic, surely the modem solutions are not and surely they do not suppose

that these paradoxes arise from a mischaracterisation of the logical system, If this is so, does it

not undermine Russell's second reason as it has here been explained? There are two points to

make in response to this question. First, we have been looking at Russell's reasons for taking

the semantic paradoxes to arise from a mischaracterisation of the logical system in the light of

his conception of logic as discussed in section 1. Thus, insofar as Ramsey's conception of logic

is comparable to Russell's in the way that the modem one is not, thdie consideration of the

modem solutions to the semantic paradoxes does not in fact affect Russell's second reason in

the way suggested. Secondly, if one examines closely the modemn solutions to the semantic

paradoxes, one finds that they in general divide into two separate kinds: the first kind is

exemplified by the celebrated solution that Tarski put forward in his "Wahrheitsbegriff' and

appeals to the objectlanguage/metalanguage distinction described in this paper;63 4 the second
I _
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kind is exemplified by Russell's own solution, his ramified theory of types, and appeals to some

notion of ramification that is accomplished by restricting the quantifier rules -- note that, qua

modem solution, the ramified theory of types need not rely upon Russell's particular conception

of logic, Consider the first kind of modem solution. Curiously, although the

objectlanguage/metalanguage distinction characteristic of this kind may be thought to be

foreshadowed in Ramsey's hierarchy of specification relations, the way that it is standardly

implemented by solutions of this kind is by means of a type-theoretic hierarchy as discussed in

"Wahrheitsbegriff' and GOdel's "On Formally Undecidable Propositions of Principia

Mathematica and Related Systems 1" (1931)."6 Such an implementation is required because, in

order to define formally any of the semantic notions of specification, satisfaction, or truth for a

particular language L,, one must be able to quantify over (the equivalent of) binary relations

between G6del numbers of the formulae of Li and (finite) sequences of the individuals,

properties, and relations which are quantified over by the variables of Li. Higher-order

quantification, therefore, is needed. In this respect, modem solutions of the first kind actually

appeal to resources that Russell would take to belong to logic and, accordingly, the

consideration of them, rather than undermining Russell's second reason, in fact supports it.

Now consider the second kind of modem solution. Church has recently defended this kind as a

viable and attractive alternative to the first kind by pointing out the advantages that Russell's

solution has over Tarski's "Wahrheitsbegriff' solution. 6 According to Church, one of these

63See "The Concept of Truth in Formalized Languages" in Logic, Semantics, and
Metamathematics, (Indianapolis: Hackett, 1983),

1This distinction is to be found, if not explicitly, earlier in Hilbert's work.

"See "On Formally Undecidable Propositions of Principia Mathematica and Related
Systems I" (1931) in van Heijenoort, pp, 596-601. Note that the modem solutions to the
semantic paradoxes also use' coding' techniques that G6del introduced in this paper.
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advantages is that Russell's solution is more systematic than Tarski's in the sense that Tarski's

solution requires assumptions that are overtly ad hoc in a way that those required by Russell's

solution are not. Whether or not this is so, it is already clear that the consideration of Russell's

solution and the kind of modem solution that it exemplifies, again rather than undermining his

second reason, can only support it.

The third reason that Russell has for taking the semantic paradoxes to arise from a

mischaracterisation of the logical system is, roughly speaking, that, although the arguments to

the semantic paradoxes so far discussed all employ semantic notions like specifiability,

applicability, and truth and appeal to special principles that govern such notions, it may be

possible to generate other semanfic paradoxes without having to rely explicitly on such notions

and principles. That is, it may be possible to generate other semantic paradoxes from just the

resources of the logical system itself6" Recall that, according to Russell, the logical system has

variables that range over propositions and propositional functions. As such, the system by itself

already has the resources to express, to a certain extent, semantic notions, For instance, if p, is

a proposition and q4 is a propositional function that applies to p, and to nothing else, then the

statement that p is true can be expressed by the formula "9p(q(p) A p)", Likewise, the

statement that p, is false can be expressed by the formula "3p(qt(p) A -p)". Such expression is

acceptable to Russell because he takes it that the variables that range over propositions can be

used to refer to propositions as well as to express them," In this respect, since the logical

%See Alonzo Church's "Comparison of Russell's Resolution of the Semantical Antinomies
with that ofTarski" in Journal of Symbolic Logic 41 (1976) pp. 747-60. It should be noted
that Church's defence is addressed to, among others, Quine who claimed that Russell's addition
of his axiom of reducibility to the ramified theory of types revoked whatever security from
contradiction the theory's ramification obtained. See Quine's Set Theory and its Logic, §35,

67By 'the logical system' here, I mean the system as it is characterised before Russell
provides his solution to the paradoxes (the system implicit in Principles).



51

system by itself can, to a certain extent, express semantic notions such as truth and falsehood,

perhaps one could generate semantic paradoxes from just the resources of the logical system, in

a way that is analogous to the way that one generates them by explicitly employing the semantic

notions and appealing to their special principles, If that is the case, such paradoxes would

clearly have to be taken to arise from a mischaracterisation of the logical system, (Note that

since Ramsey's proposed solutions to the semantic paradoxes do not focus at all on the

characterisation of the logical system, they would be impotent in this particular situation,)

Tn his RRR, Goldfarb suggests one way that one could perhape g enerate a version of

the Epimenides paradox by appealing to just the logical system's resources: Consider the

formula "Vp(qj(p) -- -'p)" (iii), 69 It may be taken to express the proposition that any proposition

that satisfies the propositional function * is false. Now, suppose that *q is such that it is

satisfied by and only by the proposition expressed by (iii), Let the proposition expressed by (iii)

be q, Then, trivially, q -- Vp(Q(p) -, -p), By universal instantiation, Vp(q(p) - -p) - (q(q) -

-'q), Since q uniquely satisfies 9, (qq -P -'q) -, --q. Hence, by transitivity, q--'q, However,

since q is the proposition expressed by (iii), -'q -, 3p(p(p) A p), Since q uniquely satisfies Ir,

3p(4(p) A p) - (qi(q) A q), Hence, by transitivity again, -'q-q. Contradiction,

Goldfarb suggests that the crucial supposition that there is a q such that it is satisfied by

q and only q is very weak. This suggestion, in fact, is confirmed by the following interesting

circumstance; When Russell develops his 'substitutional theory' in 1905 and 1906, he

introduces apparatus to the logical system that allows one to carry out G6delian diagonalisation,

eRussell's view of propositional variables, in turn, relies on his further view that
propositions are both, qua ordered complexes of terms, objects on a par with all other objects
in the realm of being as well as the objects ofjudgement, This further view involves certain
difficulties of interpretation, which we shall see in Chapter 2,

69Cf p. 29,
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By means of this diagonalisation, one can define (the equivalent of) such a 4v, In this respect,

to the extent that it is legitimate to introduce such apparatus to the logical system, it is possible

to generate this semantic paradox without explicit reliance on the semantic notions and their

special principles, To that extent, these latter are not essential to the paradox and, therefore,

solutions of Ramsey's kind are misdirected. Accordingly, Russell has reason to take the

semantic paradoxes in general to arise from a mischaracterisation of the logical system.70

I now consider the mixed paradoxes: Russell's propositional function paradox and his

proposition paradox, Before we look at why Russell takes these paradoxes to arise from a

mischaracterisation of the logical system, I should first comment about why they do not prima

facie fall under either of the two groups of paradoxes already discussed, Consider the

propositional function paradox first. On the one hand, the argument to this paradox faultlessly

mimics die argument to Russell's class paradox in the sense that the former argument can be

easily obtained from the latter one, first, by replacing the latter argument's expressions for

classes by expressions for monadic propositional functions and its expressions for membership

by the notation for satisfaction and, then, by replacing the comprehension principle governing

classes by one governing propositional functions, In addition, the propositional function

paradox does not explicitly employ any of the semantic notions of specification, application, or

truth. For these two reasons, one should feel reluctant to classify this paradox as a semantic

paradox as opposed to a set-theoretic one. On the other hand, the argument to the

propositional function paradox does not mention classes but instead mentions propositional

functions. Recall that these are the semantic items meant by predicates and, more generally,

70 Russell's own final solution, the vicious-circle principle and its attendant ramified theory of
types, is such as to prevent the above argument from arriving at contradiction. According to
this solution, q cannot fall within the scope of the variable p and, so, cannot satisfy the
propositional function q ,
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open formulae. For this reason, one should feel reluctant to classify the paradox as a set-

theoretic paradox as opposed to a semantic one. Next, consider Russell's proposition paradox,

Recall that its argument mentions classes and appeals to a comprehension principle governing

classes. To the extent that Burali-Forti's, Cantor's, and Russell's class paradox are classified as

set-theoretic, in this regard, this paradox should be also. However, the argument to the

proposition paradox also mentions propositions and the semantic notion of truth, and it appeals

to an existence principle for propositions, To the extent that the Epimenides paradox is

classified as semantic, in this regard, so should this paradox be, In this light, Russell's

propositional function paradc.. and his proposition paradox strongly suggest that the two

groups of paradoxes distinguished by Ramsey are neither mutually exclusive nor pair-wise

exhaustive, They also further suggest that (from Russell's point of view) the distinction is not

relevant to the paradoxes' solution.

We now turn to the question why Russell takes the propositional function paradox and

proposition paradox to arise from a mischaracterisation of the logical system, From what we

saw above concerning the set-theoretic and semantic paradoxes, the answer should already be

clear, The formalisation of the argument to the propositional function paradox shows that only

four interesting items are required: the comprehension principle for propositional functions, the

well-formedness of x(x), universal instantiation, and existential instantiation, By Russell's

light's, each of these items belongs to an element of the logical system and, thus, the paradox

must arise from a mischaracterisation of at least one of these elements, Similarly, the

formalisation of the argument to the proposition paradox shows that only the comprehension

principle for class A·, an existence principle for propositions, and trivial rules of inference are

required. Since each of these items, by Russell's lights, belongs to an element of the logical

system, this paradox must, likewise, arise from a mischaracterisation of at least one of these.
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At this point, before we move on to consider Russell's second position on the nature of

the paradoxes' solution, I should summarise what we have seen with respect to his first

position. To repeat, the position is, roughly speaking, that all the modem paradoxes arise from

logic. Russell's justification for this position may be put in terms of the three groups of

paradoxes described in subsection (a). Briefly, he takes the set-theoretic paradoxes to arise

from logic because he takes the notion of class to be a logical notion -- at least early on -- and

because he takes the salient principles governing this notion to be logical principles. He has

three reasons for taking the semantic paradoxes to arise from logic: logic contains substantive

semantic principles; Ramsey's own solutions to the semantic paradoxes are problematic; and it

may be possible to generate semantic paradoxes from just the resources of logic itself. Finally,

Russell takes the mixed paradoxes to arise from logic for reasons similar to those concerning

the set-theoretic and semantic paradoxes.

We now consider why Russell held the second position on the nature of the paradoxes'

solution, To repeat, the position is that all the paradoxes arise from the same error -- for some

appropriate notion of sameness of error -- and, so, their solution must be unitary. Russell has

three interrelated reasons for holding the position. They are outlined in his "On Some

Difficulties in the Theory of Transfinite Numbers and Order Types" (1905) (henceforth, "On

Some Difficulties"), and are also discussed in later writing,"

The first reason for holding the second position is that, according to Russell, all of the

arguments to the paradoxes have a particularly easily specifiable general form, He describes

this form as follows:

7"On Some Difficulties in the Theory of Transfinite Numbers and Order Types" in EA, pp.
135-164, In this paper, Russell examines why the set-theoretic paradoxes arise and offers
possible solutions to them. At this point, the semantic paradoxes had not yet entered the
discussion.



55

(iv) Given a property 4 and a function f, such that,if 4 belongs to all the members of
iu, f u always exists, has the property 4), and is not a member of u; then the
supposition that there is a class w of all terms having the property ý and that
f w exists leads to the conclusion that f w both has and has not the property
4.["On Some Difficulties", p. 142,]

It is clear that if there is such a property 4, function f, and class w, contradiction quickly

follows: Since every member of w satisfies 4, f w exists and satisfies 4. Conversely, since f w

is not a member of w and iw consists of all the items satisfying 4, f w does not satisfy 4. It is

also clear that the arguments to Burali-Forti's, Cantor's, and Russell's class paradox have the

general form (iv) that Russell describes, In the case of the argument to Burali-Forti's paradox,

Xx.x x is instantiated by Xx(x is an ordinal number), and Xu.fu is instantiated by Xu(the ordinal

number of u). In the case of the argument to Cantor's paradox, •x. 4)x is instantiated by

Xx(x-x), and Xu,fu is instantiated by Aut u, the power-class function, In the case of the

argument to Russell's class paradox, .x.4)x is instantiated by Xx(xcx), and Xu.fu is instantiated

by Xuu,u the identity function. However, it is not clear how any of the arguments to the

semantic paradoxes instances the general form (iv). Although Russell does not explicitly

consider these in "On Some Difficulties", when in later writings he does, he appears to take

them to instance (iv) without explaining how.72 By appealing to an interesting formalisation of

semantics, perhaps it may be possible to show that the arguments to the semantic paradoxes,

suitably represented, do indeed instance (iv).

The second reason for holding that all of the paradoxes arise from the same error is that

there is a recipe for generating an endless number of paradoxes, all of which instance the

general form (iv). 73'7,4 The recipe starts by specifying via transfinite recursion from a function f

7See "On Insolubilia", pp. 198-200; MPD, pp, 58-9,

7"See "On Some Difficulties", pp. 142-3.
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and a base point c a certain sequence that is isomorphic to On, Then, assuming that f satisfies

certain conditions which many functions in fact do, the recipe deduces a contradiction, The

recipe is sketched below:

(1) Pick a function f that is defined on all classes, and pick a class c,

(2) By definition via transfinite recursion from f and c, specify a well-ordered sequence as
follows:

base: c is the first term.

successor: f c is the second term, For all other terms z of the sequence, the successor of z
is f w, where w is the class of all terms in the sequence up to and including z,

limit: If u is an initial segment of the sequence (VxEuVy(ify occurs in the sequence
before x, then yeu) with no greatest member, then the 'next' term of the
sequence that occurs after all of the members of u is f u.

(3) Call the relation that orders the sequence specified in (2) R. By taking the ancestral of
R, specify the property of being a member of the sequence.

(4) Assume that f satisfies the cond'tion (*) that if u is a class of members of the sequence,
f u is a member of the sequence that is not a member of u., Then, if w is the class of all
members of the sequence, it follows that f w both is a member and is not a member of the
sequence. Contradiction.

It should be clear that this recipe appeals to two substantive assumptions in order to

generate the contradiction, both of which occur in (4): the assumption that f satisfies the

condition (*) and the assumption of unrestricted comprehension needed to guarantee the

existence of w. The first assumption need not be questioned, however, because there are

various functions that one could take to be f which satisfy (*). Russell mentions two, along

with corresponding base terms. One function, with its base term, generates the Burali-Forti

contradiction: let Au.fu be Xu(tQ!e ordinal of the class u) and let c be 0, the empty set, Such an

74Note that this is not to say that the recipe generates all the paradoxes or even all the
modem paradoxes discussed above, For instance, it does not generate Russell's class paradox,
although -- as we shall see shortly -- it does generate a contradiction related to it.
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f and c produce the sequence On of all ordinal numbers and, thus, f OneOn and f OnwOn. The

other function, with its base term, generates a contradiction related to Russell's class paradox:

let u. fu be X u.u, the identity function, and let c be any well-founded class, Such an f and c

produce a sequence S of terms, none of which is a member of itself, such that f SeS and f SetS.

It is noteworthy that if c is 0, the sequence S consists of the von Neumann ordinals; as such,

Russell anticipates this important sequence long before von Neumann describes it (1923)."'

Russell takes the recipe to be able to generate an infinite number of contradictions,

although he never describes an effective procedure for obtaining the required number of Ps and

c's, Of course, there are trivial procedures for doing so: for instance, pick c to be successive

members of the von Neumann sequence of ordinals, Such trivial procedures, however, only

yield trivial variation between the contradictions that are generated by the recipe. One may

perhaps object that they do not yield enough variation for Russell to take the existence of the

recipe to be a good reason for holding the second position. In light of the limitative results of

Goldel and Church, one may perhaps object further that it is doubtful whether effective

procedures that are in this sense non-trivial exist. Even if these objections are correct, one may

still say that the recipe has at least this merit: it may naturally be viewed as describing

prototypically the kinds of important processes referred to by the third reason for holding the

second position -- a reason that does not suffer this apparent difficulty.

This third reason for holding that the paradoxes all arise from the same error is the

following:

.. the contradictions result from the fact that, according to current logical
assumptions, there are what we may call self-reproductive processes and
classes. That is, there are some properties such that, given any class of terms

7"von Neumann, Zur Einfiihrung der transfiniten Zahlen, Acta Sci, Math. (Szeged) 1, 199-
208.
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all having such a property, we can always define a new term also having the
property in question. Hence we can never collect all the terms having the said
property into a whole; because, whenever we hope we have them all, the
collection which we have immediately proceeds to generate a new term also
having the said property.["On Some Difficulties", p. 144.1

According to Russell, therefore, some mischaracterisation of logic gives rise to self-

reproductive processes of the kind that he describes, which in turn give rise to the paradoxes,

These processes are self-reproductive in the sense that they are iterative and, thus, can be

thought of as realised in a sequence of 'stages.' For any one of these processes, at any given

stage, "given [a] class of terms all having [the] property [associated with the process], we can

always define a new term also having the property in question." The definition of this new term

takes us to the next stage.

There are two points to note about these self-reproductive processes. First, in light of

this consideration of stages, the description of them cited above is similar to the description of

the recipe, although the former emphasises an aspect of circularity that the latter does not. In

this respect, the two sequences specified in the above discussion of the recipe may be viewed as

paradigms of such processes, Secondly, although Russell in "On Some Difficulties" intends to

appeal to these processes specifically in order to characterise how the set-theoretic paradoxes

arise, they clearly may be appealed to to characterise how all of the paradoxes arise. Indeed,

Russell does exactly this later in "On 'Insolubilia"', ML, and Principia itself, In these works,

however, the appeal to self-reproductive processes is spelled out more precisely as his vicious-

circle analysis. In this respect, Russell's third reason for holding that the paradoxes all arise

from the same error -- viz., that their arguments alt appeal to self-reproductive processes of a

certain sort -- is one that deserves considerable respect and attention. Since Russell's initial

investigations into the matter, it indeed has received this.

Before moving on the next chapter, I should summarise what we have just seen with
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respect to his second position on the nature of the paradoxes' solution, To repeat, the position

is, roughly speaking, that all the modem paradoxes arise from the same error. Russell has three

reasons for holding this position. The first reason is that, according to Russell, the paradoxes

all instance an easily specifiable general form, We saw, however, that it is not entirely clear

whether or not the semantic paradoxes do in fact instance this form, His second reason is that

there is a recipe for generating an infinite number of paradoxes. We saw here that it is doubtful

whether the paradoxes which this recipe generates vary enough in character for the existence of

the recipe to count as a good reason. Finally, the third reason is that all the arguments to the

paradoxes appeal to certain 'self-reproductive processes,' The appeal to such processes later

becomes spelled out as Russell's vicious-circle analysis, It is noteworthy that this analysis may

be seen to lead to his eventual solution to the paradoxes, viz., his ramified theory of types, I

examine the analysis in Chapter 3.
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Chapter 2

The Logical Theory of The Principles of Mathematics

As a result of his exposure to the work of G. Peano and GE Moore, Russell produced his

Principles ofMathematics, volume 1. In this volume, he put forward the beginnings of a

logical theory whose precise details he intended to explain in a companion volume 2, Before

Russell could staft to work on this companion volume, however, he discovered his class

paradox and several logicians discovered other paradoxes soon afterward, Accordingly, he

postponed the work on the companion volume and devoted himself instead to finding the

solution to the paradoxes. After much effort, in 1906 he came upon what he took to be their

solution, viz., his celebrated vicious-circle principle, Shortly afterward, Russell began work on

the intended companion volume and, as is well-known, this work culminated in the publication

of Principia Mathematica. 76

Not surprisingly, the logical theory put forward in Principia to a certain extent

resembles the logical theory implicit in Principles. Both theories have the same items as their

subject matter -- that is, individuals, propositional functions, and propositions -- and, roughly

speaking, share most of their basic principles, Indeed, the logical theory of Principia -- call it

LT(PM) -- may be understood as the result of modifying the logical theory implicit in Principles

-- call it LT(POM) -- in order to abide by the vicious-circle principle. In this light, in order to

understand LT(PM) one should first understand LT(POM) as well as the vicious-circle

principle. In fact, when Russell presents LT(PM) in Principia, he appears to assume that his

audience is already familiar with LT(POM) for he elaborates very little on the nature of several

76See the Preface to Principia, p, v,
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of LT(PM)'s important elements -- for example, its individuals, propositional functions,

propositions, and logical constants.

Toward the end of understanding LT(PM), I briefly examine LT(POM) in this chapter

(I examine Russell's vicious-circle principle in the next chapter), In this effort, I confine my

attention both in breadth and in depth. That is, I only examine those aspects of LT(POM) that

are relevant to understanding LT(PM) and, even when examining such aspects, I do so only to

the extent that it is relevant in this respect. Since Russell's discussion of LT(POM) in

Principles is extremely rich, there is much to LT(POM) to which my effort cannot be thought

to do justice,

1, The Ontology of LT(POM)

In Part I of Principles, entitled "The Indefinables of Mathematics," Russell puts forward an

ontological view that describes the ontology he takes LT(POM) to have, his realm of being,

Peter Hylton in his RIAP aptly calls this ontological view Platonic Atomism. The realm of

being it describes is atomistic in two respects. First, every 'term' -- Russell's word meaning

object in general -- in the realm of being is either absolutely simple -- that is, it is not composed

of anything else -- or it is obtained by an operation of composition ultimately starting from

other terms that are simple. Secondly and more significantly, every term in the realm of being,

roughly speaking, is what it is -- has the nature that it does -- independently of the

circumstances of every other term in the realm of being, More precisely, every simple term is

what it is independently of the circumstances of every other term and every compound term is

what it is independently of the circumstances of every term that is not a constituent of it,

Russell made this claim by saying that all relations are external. As is well-known, he did so as

part of his rejection of British Idealism which claimed that all relations are internal -- in other
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words, every term is what it is in virtue of every relation it bears to every other term. The realm

of being Russell's ontological view describes is platonistic in the sense that certain of its

terms are abstract as opposed to concrete. Numbers, classes, properties, and relations are

among such abstract terms. Russell advocated that the realm of being countenance abstract

terms for the same reason that Frege did: they are required to give an account of mathematical

discourse,

Like any logical theory, LT(POM) contains several logical categories and each term in

the realm of being belongs to one or more of such categories according to the logical role(s) it

may play. Among others, there are the categories of thing, concept, propositional function,

denoting concept, class, proposition, variable, and logical constant. As the categories of thing,

concept, propositional function, proposition, variable, and logical constant play constitutive

roles in LT(PM), I focus on them in the following,

(a) Propositions"

Propositions play two important roles in LT(POM). First, they are 'complexes' of terms and, as

such, are themselves terms in the realm of being on a par with all other terms in the realm of

being, As complexes, they may be thought of as ordered in the sense that only certain orderings

of words of certain kinds constitute clauses that mean propositions and different orderings of

the same words constitute different clauses that may mean different propositions, Secondly,

propositions are the objects or vehicles ofjudgement. As such, they are what we judge,

understand, suppose, know, assert, and so on. Crucially, Russell claims that, save for a few

notable exceptions7 , what a proposition is about is in the proposition itself and, so, when we

77Although I shall not discuss the matter, Russell's account of propositions descends directly
from GE, Moore's account.



64

judge, suppose, or know a particular proposition, we are judging, supposing, or knowing about

the tenns that belong to the complex that is that proposition.

One may note the stark contrast between this view of kussell's and Frege's more

familiar view. According to the latter view, what we judge, suppose, or know are thoughts and

when we judge, suppose, or know a particular thought, we are judging, supposing, or knowing

about the referents of the senses that compose that thought. Such referents do not in any way --

on most readings -- figure in the composition of the thought.

This stark contrast was actually a subject taken up in correspondence between Frege

and Russell, Thus, in a response to Frege's comment that:

,,. Mont Blanc with all its snowfields is not itself a component part of the
thought that Mont Blanc is more than 4000 meters high."7

Russell famously writes:

I believe that in spite of all its snowfields Mont Blanc itself is a component part
of what is actually asserted in the proposition 'Mont Blanc is more than 4000
meters high' .,, we assert the object of the thought (an objective proposition,
one might say) in which Mont Blanc is itself a component part.'"

The contrast may be highlighted by considering the predicative part of the proposition in

question, viz., the property of being more than 4000 meters high. By Russell's lights, if this

property is a term in the realm of being, the proposition in question is the complex of Mont

Blanc and this property, That the property itself is a component of the proposition gives rise to

several problems to which Frege's view on the face of it does not, Among others, there is the

"See the discussion of Russell's theory of denoting concepts below,

79Letter to Russell dated 13 November 1904, Gottlob Frege: Philosophical and
Mathematical Correspondence, ed. B. McGuiness (Chicago: The University of Chicago Press,
1980), p, 163.

"oLetter to Frege, dated 12 December 1904, op, cil., p. 169,
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problem of explaining in what the unity of the proposition consists, Russell states the problem

in a rather sharp way in Principles:

The twofold nature of the verb, as actual verb and as verbal noun, may be
expressed, if all verbs are held to be relations, as the difference between a
relation in itself and a relation actually relating, Consider, for example, the
proposition "A differs from B." The constituents of this proposition, if we
analyze it, appear to be only A, Difference, and B, Yet these constituents, thus
placed side by side, do not reconstitute the proposition, The difference which
occurs in the proposition actually relates A and B, whereas the difference after
analysis is a notion which has no connection with A and B. It may be said that
we ought, in the analysis, to mention the relations which difference has to A
and B, relations which are expressed by is and from when we say "A is different
from B." These relations consist in the fact that A is referent and B relatum
with respect to difference. But "A, referent, difference, relatum, B" is still
merely a list of terms, not a proposition, A proposition, in fact, is essentially a
unity, and when analysis has destroyed the unity, no enumeration of
constituents will restore the proposition. The verb, when used as a verb,
embodies the unity of the proposition, and is thus distinguishable from the verb
considered as a term, though I do not know how to give a clear account of the
precise nature of the distinction.[Principles, §54.]

As we shall see in the next chapter, Russell will change his view slightly, In response to the

vicious-circle principle, he will conclude that a term that plays a predicative role in a given

proposition cannot figure in that proposition in the same way as a term that plays a

nonpredicative role in it,

Those who are familiar with Russell's later 1918 theory of Logical Atomism may now

be prompted to ask how LT(POM)'s propositions relate to facts. Recall that the 1918 theory

countenances facts as items distinct from propositions5' and it says that a proposition is true if

and only if there exists a fact with which it may correspond. Truth is thus definable in terms of

such a correspondence and, accordingly, the 1918 theory cannot countenance 'false' or merely

possible facts. Recall also that the 1918 theory says that the world is simply the totality of all

"sAccording to the 1918 theor , a proposition is an indicative sentence, not what such a
sentence means.
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the facts that there are. LT(POM) differs rather sharply from this later theory, To begin with,

LT(POM) does not countenance facts as items distinct from propositions. Rather, it has as a

logical constant the property of being true and, as such, this property is an indefinable term in

the realm of being.8? Facts may be defined in terms of this property as follows: If the property

happens to apply to a given proposition, then and only then that proposition is true and may be

taken to be a(n actual) fact. In this respect, to the extent that the world is simply a totality of

facts, by LT(POM)'s lights, the totality in question must be all the true propositions and none of

the false ones.

It is noteworthy that Russell's view has one consequence about propositions that, for

different reasons, Frege, the early Wittgenstein, and more contemporary philosophers of

language all claim, viz., that a proposition, qua meaning of a sentence, has the nature that it

does irrespectively of whatever else may be the case -- in particular, irrespectively of its truth

value. This consequence follows from the circumstance that a proposition is a term in the

realm of being and that every term in the realm of being has the nature that it does

irrespectively of the circumstances of every other term.

So far, we have not looked at the requirements that the terms that make up a

proposition must satisfy in order that they may do so. I address this matter in what follows.

(b) Things and Concepts.

Here I consider what Russell says about the intemrnal structure of what might be called

atomic propositions, These are propositions that are not composed of simpler propositions;

that is, they are propositions none of whose piroper parts is a proposition.

8 2See Principles, § 12, "On the Nature of Truth and Falsehood" in Philosophical Essays.
Russell's view about the role of truth in LT(POM) descends from what Moore says about it.



67

In §48 of Principles, Russell writes that any atomic proposition may be understood to

be composed of terms of two kinds, one term that plays a predicative role in the proposition in

question and one or more terms that play a nonpredicative role in the proposition. In general,

when such an atomic proposition is expressed by a natural language sentence, the term playing

the predicative role in the proposition will be correlated to the sentence's verb or adjective(s)

and the term(s) playing the nonpredicative role will be con elated to the sentence's noun(s)

and/or noun phrase(s).

S ;1nificantly, Russell writes that any term that plays a predicative role in an atomic

proposition may play a nonpredicative role in some other atomic proposition, Any such term

Russell calls a concept, He further writes that there are terms in the realm of being that play

and can only play a nonpredicative role in atomic propositions. Any such term he calls a thing

(from now on I shall write 'Thing' as opposed to 'thing' to distinguish Russell's technical usage

from ordinary usage). Russell's justification for this claim seems to be similar to Aristotle's

justification for the claim that substances exist.

In an effort to illustrate the above claims, Russell in §48 considers the proposition that

Socrates is human, Clearly, in this proposition Socrates is a term that plays a nonpredicative

role whereas the property of being human is a term that plays a predicative one. According to

Russell, Socrates is such that he could never play anything but a nonpredicative role in a

proposition and, therefore, he must be a Thing, The property of being human, on the other

hand, is a concept, for there are atomic propositions such as the one considered here in which it

plays a predicative role and there are atomic propositions in which it plays a nonpredicative role

as well -- Russell offers the proposition that humanity belongs to Socrates as an instance of the

latter kind.

One may note here yet another point of contention between Russell and Frege. In
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contrast to Russell, Frege famously claims in his "On Concept and Object" that whatever plays

a predicative (or unsaturated) role may not play a nonpredicative (or saturated) role as well,

Ironically, in their arguments toward their respective conclusions on the matter, Russell and

Frege both make appeal to the conditional that if it were not the case that a predicative item

could play a nonpredicative role, then one could not even say of the predicative item in

question that it plays a predicative role. However, whereas Russell contraposes after such an

appeal, Frege simply detaches,

I. is noteworthy that Russell writes very little about the nature of Things and concepts

that is at all specific and, of the terms in the realm of being with which we may be familiar, he

never identifies the ones that he takes to be Things and the ones that he takes to be concepts,

This paucity of detail actually serves his purpose since the categories of Thing and concept are

logical categories of LT(POM) and, qua logical theory, LT(POM) should be indifferent to the

specific features of the world,"

(c) Variables

LT(POM)'s variables play an integral role in the construction of what might be called

compound propositions. These are propositions that are not atomic. They also play an integral

role in the construction of propositional functions,

Russell's account of LT(POM)'s variables is very complicated and thus difficult to

explain. Keeping our stated end in mind, I only offer the following brief remarks, First, as we

saw in chapter 1, §1, the variables are actual terms in the realm of being on a par with all other

terms, They are not symbols but terms meant by symbols. Secondly, they are all completely

'3However, since LT(POM) may be construed as a theory describing the most general
features of the realm of being, this last claim may be difficult to spell out in any clear way,



69

unrestricted and, so, they all have the same universal range of variation, In this respect, there is

only one kind of variable and, indeed, Russell talks about the variable:

By making our x always an unrestricted variable, we can speak of the variable,
which is conceptually identical in Logic, Arithmetic, Geometry, and all other
formal subjects,[Principles, §881

However, there must be infinitely many tokens of this one kind -- in the sense -:hat the variables

x and y occurring in Rxy are different tokens -- since propositions and propositional functions

may contain any number of variables in them. Thirdly, although the range of a variable may be

infinite, the variable itself must have only finite complexity. This follows from Russell's theory

of denoting concepts explained in Chapter V of Principles. Roughly speaking, according to this

theory, every term that figures in a proposition must have only finite complexity since otherwise

our 'finite' minds would not be able to comprehend it. However, there are propositions that

clearly talk about terms having infinite complexity such as the class of natural numrbers and, so,

there must be terms having only finite complexity that figure in these propositions and represent

or 'denote' such other terms -- note here that this circumstance constitutes an exception to the

general claim that a proposition contains what it is about. For instance, Russell takes the term

all numbers to be one of these terms having only finite complexity;

With regard to infinite classes, say the class of numbers, it is to be
observed that the concept all numbers, though not itself infinitely complex, yet
denotes an infinitely complex object, This is the inmost secret of our power to
deal with infinity. An infinitely complex concept, though there be such, can
certainly not be manipulated by the human intelligence; but infinite collections,
owing to the notion of denoting, can be manipulated without introducing any
concepts of infinite complexity.[Principles, §72]

Not surprisingly, Russell also takes the variable to be another of the terms having only finite

complexity that figures in propositions and represents or denotes an infinite collection, namely,
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its infinite value range. 84

(d) Logical Constants.

Like LT(POM)'s variables, LT(POM)'s logical constants play an integral role in the

construction of compound propositions and in the construction of propositional functions,

Roughly speaking, LT(POM)'s logical constants include among others the universal quantifier",

material implication, membership, class abstraction, and truth.8 6 Unfortunately, Russell says

very little about these other than that they are indefinable. Indeed, because they are

indefinable, little can be said about them:

The logical constants themselves are to be defined only by enumeration, for
they are so fundamental that all the properties by which the class of them might
be defined presuppose some of the terms of the class, But practically, the
method of discovering the logical constants is the analysis of symbolic logic ..
[Principles, § 10

The circularity that Russell alludes to here is obviously the circularity that Quine talks about in

"Truth by Convention": the circularity such that for any logical constant, the specification of its

semantics will employ that logical constant or others that are likewise circularly defined 87

"Strictly speaking, the terms in question having only finite complexity, which Russell calls
denoting concepts, are the terms meant by locutions of the following form: an F, any F, every
F, all F, some F, and the F, In general, every denoting concept stands in an indefinable relation
of denoting with some other term in the realm of being. Whenever any of these concepts
occurs in a proposition, the proposition will not be about the concept in question but about the
term that it denotes, The variable is an integral part of any denoting concept signalled by 'any
F',

85Actually, in Principles, Russell writes very little that is explicit about the universal and
existential quantifiers. Rather, he writes extensively about what he
calls formal implication, which is exhibited in propositions having the form: Vx[4(x)-, 4(x)],
Obviously, universal and existential quantification can be defined in terms of formal
implication,

86See Principles, § 12.

87Cf Principles, § 16,
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In spite of the remark cited above, one can make a few comments about the logical

constants. First, like the variables of LT(POM), these are terms on a par with all other terms;

they are not symbols. Unfortunately, many have interpreted Russell's talk of logical constants --

as well as his talk of variables and terms -- as talk about symbols and, as a result, have accused

him of making use/mention errors in several places where he actually does not. What is worse,

many have wholly misconstrued Russell's logical theory as a result, Secondly, the logical

constants of material implication and the universal quantifier are functions, In particular,

material implication is a function from pairs of propositions to prop... ,.,is, friom pairs of

propositional functions to propositional functions, or from pairs of propositional functions and

propositions -- where only one member of each pair is a propositional function -- to

propositional functions; the universal quantifier is a function from propositional functions to

either propositions or propositional functions, depending on the number of distinct free

variables occurring in the argument to this function. Moreover, in each case the function

involved in some sense figures in the values of the function. Thus, where the propositions p

and q are arguments to the function of material implication, the value of this function, p-q,

contains p, the function, and q. LT(POM)'s conception of material implication and the

universal quantifier, accordingly, differs markedly from more contemporary conceptions of

these logical constants, However, LT(POM)'s conception resembles the more contemporary

ones to the extent that it takes compound propositions whose main operators are either material

implication or the universal quantifier to be evaluated as true or false in more or less the same

way in which these others do. Thus, by LT(POM)'s lights, the proposition p-q is true just in

case p is false or q is true and the proposition Vx, (x) is true just in case 4(x) is true for every

value of x. Thirdly, the logical constant of material implication is also an important logical

relation, Thus, Russell writes:
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But it is plain that where we validly infer one proposition from another, we do
so in virtue of a relation which holds between the two propositions whether we
perceive it or not: .,, The relation in virtue of which it is possible for us validly
to infer is what I call material implication.lPrinciples, §37]

By Russell's light's, therefore, a proposition p stands in the relation of material implication to a

proposition q if and only if q is a logical consequence of p. Fourthly, although it may not be

apparent, all the other usual logical constants mnay be defined in terms of material implication,

the universal quantifier, and truth. The reason is that truth, qua property of propositions, may

be emp!,yed in much the same way in which some logical ~ ies en-, ~y the lse. As such,

negation may be defined thus: -'p .=d,, Vr[(r is a proposition) - (p-,T(r))], " Conjunction,

disjunction, equivalence, and existential quantification may be defined similarly.

(e) Propositional Functions

Here I consider the terms in the realm of being that Russell calls propositionalfjinctions, From

the discussion above, it should already be clear that such terms figure within compound

propositions rather in the way in which open formulae figure in containing sentences. Indeed,

such terms are the semantic analogues of open formulae.

Russell's account of propositional functions is not easy to comprehend. Indeed, some

of its claims are not obviously mutually consistent. Here I only offer a selection of the

account's most salient claims: First, the notion of propositional function is a generalisation of

the notion of concept. One may roughly define the notion as follows: x is a propositional

function iffx is a concept or x is a term built up from concepts by means of the logical

operators (the connectives and quantifiers), "9 In this respect, whereas a concept is to be

"Russell often drops the predication of truth and simply writes the variable ranging over
propositions: Vr[(r is a proposition) -, (p-r)],
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understood as a simple term in the realm of being which may play a predicative role -- for

instance, the concept of being red as Russell later considers it -- a propositional function is to

be understood as this as well as any arbitrarily complex term which may play a predicative role

-- for instance, xy.x<y as defined in terms of the ancestral of the successor relation,

Secondly, propositional functions are functions, That is, they are functions from Things,

propositional functions, and propositions to propositions and, in spite of these unusual

arguments and values, they are functions in the same sense in which mathematical functions

are, Indeed, Russell later writes that the functionality of any mathematical function derives

from its being, roughly speaking, constructed out of some propositional function. 9 Thirdly, a

propositional function is the result of taking a proposition, qua ordered complex of terms, and

replacing one or more of such terms with one or more variables, Thus, Russell writes:

4,(x), the propositional function, is what is denoted by the proposition of the
form in which x [the variable] occurs, [Principles, §86]

and

Given any proposition (not a propositional function), let a be one of its terms,
and let us call the proposition 4(a), Then in virtue of the primitive idea of a
propositional function, if x be a [variable], we can consider the proposition
4(x), which arises from the substitution ofx in place ofa,[Principles, §93]

One consequence of this claim is that insofar as something cannot be both a proposition and

propositional function, a proposition cannot contain a(n unbound) variable as one of its terms,9'

A variation on this third claim is that a propositional function is the result of taking a

proposition and simply extracting at least one of its terms, In §482 of Principles, Russell

'This is somewhat inaccurate. I offer a precise recursive definition in the next section.

°See Principia, *30, p, 232.

"The significance of this consequence is mitigated by the fact that Russell claims that
propositional functions are terms that can be asserted simpliciter,
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colourfully calls such a result the rump of the proposition, Fourthly, a propositional function is

essentially an ambiguity."9 This claim coheres with the third claim insofar as a variable is

considered as an ambiguity and propositional functions contain variables. However, it is clear

that in this instance Russell is committing a genuine use/mention error. The expression ' (x)' is

ambiguous in that it means either the proposition 4(a) or the proposition 4(b) or the

proposition 4(c), depending on whether the sign 'x' means either a, b, or c, Nevertheless,

insofar as the expression' X.x, 4(x)' means a particular term in the realm of being which is a

function having among its values ,4(a), $(b), and 4(c), 'Xc.4(x)' is not ambiguous and it makes

little sense to say of what it means, ,A x.(x), that it is ambiguous. Fifthly, propositional

functions are intensional terms in the sense that coextensive propositional functions need not be

identical. This claim follows from the claim that propositional functions are functions from

terms to propositions. Thus, the propositional functions 4 and qi may be such that

Vx(4(x),- (x)), yet , be not identical to 4.

(f) Classes

As I suggested above, LT(POM) countenances classes as terms in the realm of being, More

precisely, LT(POM) guarantees their existence twice over. First, it contains an unrestricted

comprehension axiom that says that every propositional function Xx. F(x) determines a class

{x:F(x)). Secondly, it contains denoting concepts and according to the theory of these

concepts, if F is a propositional function, then all F's is a denoting concept that denotes the

class {x:F(x)}, Any proposition containing all F's, rather than being about this concept, will be

about such a class,

92See Principia, pp. 38-39.
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Russell makes many interesting claims about LT(POM)' classes in Principles, but since

LT(PM) does not countenance classes at all, we need not consider them,

2. The Logical System of LT(POM)

In this section, I examine LT(POM)'s rules of formation, axioms, and rules of inference. Two

points should be noted from the start. The first point is that whereas Russell writes extensively

in Principles about the nature of the various logical categories of terms belonging to the

ontolog-y if LT(POM), he writes little that is explicit about I T"' 0OM)'. 'les of formation,

axioms, and rules of inference, Thus, unlike the above description of the nature of LT(POM)'s

ontology, much of what I say here is at best a reconstruction of what may be taken as implicit in

Principles, The second point is that when Russell does write somewhat explicitly about these

elements of LT(POM), he rarely focuses his attention on syntactic considerations. Rather, as

always he focuses it on the realm of being. Thus, instead of writing about the rules of

formation for formulae and sentences, he writes about the rules of formation for propositional

functions and propositions, Russell is to a certain extent justified in doing so because -- as we

saw in Chapter 1, § 1 -- he takes the formal language in question to mimic perfectly the realm of

being that it is about. He takes it to do so in such a way that, for instance, whatever claims he

makes about propositions and propositional functions should be easily translated to analogous

claims about sentences and formulae, 9" To a certain extent, I shall describe the elements of

LT(POM)'s logical system with Russell's particular focus.94

93Note that this circumstance coheres well with Russell's claim that, in general, a proposition
contains what it is about.

94One may note a further contrast between Russell and Frege in the light of these two points.
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(a) Rules of Formation for Propositions and Propositional Functions,

Since I have already discussed to a certain extent the nature of atomic propositions, I begin by

looking at the formation of these. Then, after considering atomic propositional functions, I

look at compound propositions and propositional functions, Finally, I examine two

complications,

(i) Atomic Propositions:

As we saw above, there are two structural requirements that an atomic proposition of

LT(POM) must satisfy. The first requirement is that an atomic proposition of LT(POM) must

consist of the predication of some n-ary concept to a sequence of n terms. That such

predication may be polyadic was of course not an insignificant detail at the turn of the century.

The second requirement is that an atomic proposition of LT(POM) must respect the distinction

between Things and concepts. Recall that according to this distinction, a concept may play

either a predicative or nonpredicative role (or both) in an atomic proposition, whereas a Thing

may only play a nonpredicative role in such a proposition. Thus, let c and d be Things, E a

singulary concept, and F a binary concept. Then the following structures are atomic

propositions by LT(POM)'s lights (braces indicate predication): E(c), E(d), F(c,d), E(F),

F(E,c), E(E), F(E,F); and the following structures are ill-formed: c(E), c(d), E(c,d), F(d).

Note that the concepts E and F occurring in the above atomic propositions of LT(POM) are

less constrained in the way in which they do than are the predicates occurring in the atomic

formulae of first-order predicate logic. Accordingly, LT(POM) is more type-free than this

more contemporary logical theory.

(ii) Atomic Propositional Functions:

Atomic propositional functions may be specified by reference to the third claim made above
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understood as the result of taking an atomic proposition and replacing one or more of its terms

with one or more variables. Thus, let x, y, and z be variables, Then the following structures

are atomic propositional functions of LT(POM): x(y), x(z), x(y,z), x(x), y(y,y), E(x), x(d),

F(x,y), F(E,z). Clearly, the variables occurring in these atomic propositional functions are even

less constrained in the way in which they do than are the Things and concepts occurring in the

atomic propositions illustrated just above, The reason is that since all the variables range over

every term in the realm of being, no distinction analogous to the distinction between Things and

concepts applies to them, nor does any distinction analogous to the distinction between m-ary

concepts and n-ary concepts, :v,here m < n, This circumstance only serves to highlight the

degree of type-freedom enjoyed by LT(POM),

(iii) Compound Propositions and Propositional Functions:

Like Frege's logical theory and unlike earlier logical theories, LT(POM) employs iteration in the

characterisation of compounds. Thus, compound propositions and propositional fimctions are

defined inductively. The inductive rules are given as follows (where appeal is made to the

standard notions of freedom and bondage): Let 4 and p be propositions or propositional

functions, Then "-,p is a propositional function if one of 4 or p is; otherwise, it is a

proposition. Let n(x) be a propositional function with the variable x's occurring free -- this

condition is required because, officially, Russell does not countenance vacuous quantification.

Then (x)t(x) is a proposition if all of its variables are bound; otherwise, it is a propositional

function, I should note here that, following Peano, Russell calls free variables real and bound

ones apparent

(iv) Complications:

There are two complications that the above rules of formation do not address. The first

complication concerns propositional functions, viz., that no resources have been offered by
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which the variables occurring in a propositional function may be distinguished as between those

which act as arguments and those which act as parameters. The possibility of such a distinction

is required in order that the comprehension axioms concerning propositional functions be able

to guarantee the existence of those propositional functions whose existence is expected to be so

guaranteed. The resources for making the distinction between arguments and parameters will

be discussed in detail in Chapter 5 when we look at LT(PM),

The second complication concerns propositions. Recall that since LT(POM)'s

propositions are terms in the realm of being on a par with all other terms and since LT(POM)'s

variables range over every term that there is, the variables range over propositions. As a result,

one should expect there to be propositions of, say, the following form in LT(POM):

(p)(q)[( Proposition(p) & Proposition(q)) -, R(p,q)], where R is some propositional function

from pairs of propositions to propositions. Indeed, the above rules of formation guarantee this

circumstance, However, in addition to propositions of this form, there are propositions having

the following peculiar forms in LT(POM);

(p)[Proposition(p) - p],

(p)[Proposition(p)-, (pV'p)],

(p)(q)[ { Proposition(p)AProposition(q)) -, (p- (q- p))J,

Russell takes the first one to express the statement that whatever p may be, if it is a proposition,

then it is the case, He takes the second one to express the statement that whatever p may be, if

it is a proposition, then either it or its negation is the case, He takes the third one to express

the statement that whatever p and q may be, if they are propositions, then if p is the case, then q

is the case only if p is, Propositions exhibiting forms of this sort are obviously difficult to

interpret coherently. I shall examine this matter below.
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Russell explicitly puts forward in Principles many of the axioms and rules of inference

belonging to LT(POM). These axioms and rules resemble those belonging to a standard

higher-order logical theory. Of the axioms and rules that may be taken to occur only implicitly

in Principles, only a few have features that are nonstandard. I briefly summarise thdie relevant

considerations below.

Propositional Axioms:

In §§ 18-9 of Principles, Russell explicitly puts forward a collection of truth-functional

tautologies which include the following familiar ones: (p-.q)-(p-'q); simplification: pq-p;

syllogism: [(p-q).(q-r)J -, (p-,r); importation: (p-'(q-'r)) -. (pq-,r); exportation: (pq-r) -

[p-(q-r)]; composition: [(p--q),(p-r)] - (p-qr); reduction; ((p-,q)-p)-,p; (pVq)-r[(p-'q)-'q.

After putting these forward, he makes the following interesting remark about the completeness

of the propositional fragment of LT(POM):

From this point we can prove [with the rules of modus ponens and substitution]
the laws of contradiction and excluded middle and double negation, and
establish all the formal properties of logical multiplication and addition -- the
associative, commutative and distributive laws. Thus the logic of propositions
is now complete.[Principles, § 191

Quantification Axioms:

Although Russell does not explicitly put forward any quantification axioms in Principles, the

axioms of universal instantiation satisfying the schema '(x)4(x)-4(y)' might be taken to be

implicit in some of what he says."9 It is important to note that, however such axioms might be

formulated in LT(POM), they must be restricted in order to respect the distinction between

95See Principles, §§25, 40-45.
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Thing and concept. That is, consider a proposition having the form '(F) --- Ft ---', where the

variable F stands in predicative position in the complex Ft. Since a Thing may never stand in

predicative position in any complex, no Thing may instance F even though F's range is

completely unrestricted. Thus, appropriate restrictions are required in order to reflect this

circumstance within the formal system.

Identity Axioms:

In §§24 - Id 26 of Principles, Russell explicitly defines identi-' n the . r in which it is defined

in standard higher-order logic. As a result, LT(POM) requires no specific axioms to govern

this notion.

Comprehension Axioms:

In §§23 and 24 of Principles, Russell rather explicitly puts forward unrestricted comprehension

axioms." These axioms concern only the existence of classes but they are very similar to the

ones that LT(POM) requires in order to insure the existence of the propositional functions that

Russell takes to be in its ontology. To this extent, comprehension axioms concerning the

existence of propositional functions might be taken to be an implicit part of LT(POM),

Rules of Inference:

In §18 (4) of Principles, Russell writes:

A true hypothesis in an implication may be dropped, and the consequent
asserted.

This is his statement of the rule of modus ponens. He does not appear to say anything explicit

"It is noteworthy that one of these axioms has the form of Frege's Basic Law V.
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3, Difficulties Concerning LT(POM)

As one might have expected, LT(POM) involves several difficulties in addition to its being

inconsistent. I examine these as follows,

(a) The first difficulty concerns certain quantified propositions, Recall that Russell takes it

that there are propositions of the following form in LT(POM):

(p)[Proposition(p) - p],

(p)[Proposition(p)-, (pV-,p)],

(p)(q)[ { Proposition(p)AProposition(q)} -- (p-'(q -p))],

One may ask how Russell justifies countenancing propositions having forms of this sort. By

our lights, insofar as the variables p and q are construed as ranging over terms in the realm of

being -- that is, objectually -- the contexts in which they figure must be predicative if the, sense

of such contexts is to be explainable. 97 Since contexts such as 'p', 'pV--p' and 'p-(q-p)' are not

predicative, the sense of propositions having forms of the above sort is in this respect brought

into question.

That Russell countenances such propositions suggests that, in so doing, he is conflating

the two very different roles that LT(POM)'s account of proposition claims that propositions

may play. Recall that, according to the account, a proposition is a term in the realm of being on

a par with all other terms and it is an object of judgement. In virtue of playing the first role, a

9"One may argue that quantified propositions are what are expressed by ordinary language
statements of the kind that is exemplified by such locutions as 'Whatever thing you choose, it is
self-identical' and 'Whatever person you choose, he is mortal', As such, these propositions'
quantified variables must figure within predications occurring within them.
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proposition may be quantified over, referred to, predicated of, or taken as argument to a truth-

functional connective. In virtue of playing the second role, a proposition may be expressed,

asserted, supposed, believed, known, or merely understood. In this respect, perhaps Russell

mistakenly countenances propositions of the kind in question as a result of taking propositions

as in general able to play these two roles 'simultaneously', Thus, in virtue of playing the first

role, a given proposition may be quantified over and, in virtue of playing the second role, it may

figure within a truth-functional compound or stand simply by itself.

It is noteworthy that there seems to be a certain analogy between, on the one hand, the

mention and expl ession of propositions and, on the other hand, the mention and use of

sentences. To this extent, the following statements about the mention and use of sentences

might be relevant. One may use a sentence to make a claim. One may mention a sentence and

predicate something of it, One may universally quantify over a collection of sentences and

predicate something of each, However, normally, one may neither use a sentence while it is

being mentioned and predicated of nor may one use it while it is being quantified over and

likewise predicated of,"

(b) The second difficulty concerns LT(POM)'s connectives qua formal objects. As one

may have already gathered, Russell treats these ambiguously, Consider, for instance, the

conjunction sign A, On the one hand, Russell treats it as a sentential connective such that if S,

and S, are sentences, then r/AS 2
1 is the sentence that is their conjunction -- as such, rJAS\2 is

true if and only if both S, and S2 are true,99 On the other hand, Russell treats A as a functor that

"Liar and truth-teller sentences may count as exceptions to this claim but appeal to these
does not help to explain the sense of the propositions mentioned above.

I
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means the 'conjunction function' C such that if P, and P, are propositions, C(P,,P2) is the

propositional compound that is their conjunction. As a functor, A grammatically relates to

names, not sentences. The two senses of A in question are of Ccuue related, If S, expresses P,

(under appropriate circumstances) and S, expresses P2 (under appropriate circumstances), then

rghAS 21 will express C(P,,P 2).

The difficulty at issue here with respect to the conjunction sign is that, for some

LT(POM) formulae containing one or more occurrences of this sign, it is not entirely clear

which if any of such occurrences to treat as a sentential connective as opposed to a functor.

Consider, for instance, '(p)[Proposition(p) -. {(pAp)-p}]', Since A is flanked by variables, it

may be read as a functor that 'operates' on them yielding a singular term. However, since

'pAp' is an antecedent of a conditional, A may equally well be read as a sentential connective. '

Similar remarks may be made about LT(POM)'s other connectives, The material

implication sign -P, however, distinguishes itself in that Russell treats it in a further third way,

viz,, as a dyadic predicate expressing the relation of logical consequence. To this extent, the

difficulty specifically with respect to -- might be thought to be even greater than it is with

respect to any of the other LT(POM) connectives, However, some have arrived at ways of

reading occurrences of this sign so as to make sense of formulae containing them. Consider,

for instance,

(p)(q)[ (Proposition(p)AProposition(q)) -, (p -(q-p))].

Richard Cartwright has suggested that quantified formulae of this kind -- that is, formulae

whose principal logical constant after outside quantifiers are stripped away is -, -- may be made

sense of by reading their occurrence of - that is the principal logical constant after outside

'"Of course, neither reading makes complete sense of the formula in question in the light of
the first difficulty,
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quantifiers are stripped away as the dyadic relation mentioned above and the other occurrences

of - (as well as the other LT(POM) connectives) as functors. Note that this consideration

appears to support the suggestion raised in the discussion of the first difficulty that Russell takes

propositions as in general able to play their two characteristic roles 'simultaneously',

It is interesting that Quine accuses Russell of making a use/mention error in treating the

material implication sign as able to express the relation of logical consequence. Briefly,

according to Quine,'0' implication -- i.e., logical consequence -- is a relation that holds between

sentences (and their schemata) such that, if'S,' and 'S,' are names rrm oni,.ng sentences, S,

implies S, if and only if, roughly speaking, any interpretation that makes S, true also makes S,

true.10 2 Furthermore, according to Quine, a conditional is a compound sentence having the

obvious form such that it is true if and only if its antecedent is false or its consequent is true.

Moreover, whenever one utters a conditional, one does not mention its antecedent or

consequent; rather, one uses them, In this respect, implication is to be clearly distinguished

from the conditional. (They are of course intimately related to each other, In fact, one test for

implication between sentences is that the corresponding conditional be truth-functionally valid.)

It is not surprising, in this light, that Quine diagnoses Russell's treating the material implication

sign as able to express the relation of logical consequence to be the simple confusion of use

with mention,

Since Russell takes logical consequence as a relation that is borne by propositions

rather than sentences or their schemata, Quine's diagnosis is somewhat inaccurate. It would be

'0tSee Mathematical Logic, §5, pp,. 27-33, and Methods of Logic, pp. 49-51.

'02Quine's explanation of implication is actually more complicated than this as it takes
implication to be principally a relation between schemata rather than sentences. It allows
implication to be construed as a relation between sentences only derivatively,
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better to talk about the confusion of expression with mention rather than about the confusion of

use with mention. However, to the extent that there is a significant analogy -- as I suggested

above -- between these two pairs --- use/mention and expression/mention -- Quine's diagnosis

is insightful. In any case, the difficulty remains of how to read various occurrences of

LT(POM)'s connectives contained in LT(POM) formulae,

(c) The third difficulty is somewhat technical but is closely related to the first and second

difficulties. Consider the propositions focused upon In the discussion of the first diffict Ity:

(p)[Proposition(p) - p],

(p)[Proposition(p) - (pV-p)],

(p)(q)[ { Proposition(p)A/\Proposition(q)) -, (p-.(q- p))],

Recall that propositions having forms of this sort are not included among those propositions

that are covered by the inductive rules of formation, It is thus natural to ask how such rules

could be modified so as to cover them,

The simplest modification is that which results in the base clauses' countenancing the

variables as atoms. However, since the variables range over all terms in the reaLn- of being,

propositional and nonpropositional alike, these would be very peculiar atoms, In addition,

unless the recursive clauses were significantly modified in turn, they would countenance

constructions of the following bizarre kind as propositional functions: p-,4(c), p--q, and

-'q.(x)4(x). Such constructions would become propositions, by Russell's lights, only after

something having a form like '(p)[Proposition(p) -, ,.]'. was placed over them,

Perhaps we could avoid these unsavoury consequences by resorting to a different

modification of the rules of formation. However, it should be clear that any modification that

managed to avoid such consequences woduld be awkwardly complex and rather ad hoc. To this
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extent, a satisfactory answer to the original question does not appear forthcoming, I should

point out that this technical difficulty to some measure does not arise in LT(PM). Since this

later theory is typed, it has variables whose ranges are restricted to propositions. These

restricted variables are countenanced as atoms by the theory's rules of formation.

(d) The fourth difficulty is similar to the preceding one. Consider the proposition (4), 4(c).

On the one hand, since LT(POM)'s variables range over all the terms that there are, 4 ranges

over Things as well as concepts. On the other hand, according to the distinction between

Things and concepts, a Thing cannot stand in predicative position within an atomic proposition.

Thus, where t is a Thing, the complex t(c) is ill-formed and, as such, it does not make sense to

say of c that it is t (recall that for this reason, LT(POM)'s axioms of universal instantiation had

to be suitably restricted). Clearly, the two circumstances in question here appear to be at odds

with one another, On an objectual reading of quantification, the proposition ( ).4(c) is the

proposition that whatever 4, may be, 4 applies to c, If 4 may be t, then, on the face of it, this

proposition 'implies' that t applies to c. But then it implies something that cannot be said.

Russell himself explicitly acknowledges this difficulty in Principles:

If xRy implies x'Ry, whatever R may be, so long as R is a relation, then x and
x', y and y' are respectively identical. But this principle introduces a logical
difficulty from which we have been hitherto exempt, namely a variable with a
restricted field; for unless R is a relation, xRy is not a proposition at all, true or
false, and thus R, it would seem, cannot take all values, but only such as are
relations.([Principles, §281

Because LT(PM) is typed and, so, the ranges of its variables are restricted, this

difficulty does not arise in this later theory.

(e) The fifth difficulty concerns a feature of propositional functions that I have neglected to
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mention so far. According to Russell, like propositions, propositional functions are dual-

natured: they are terms in the realm of being on a par with all other terms and they are objects

of judgement. Indeed, Russell says that propositional functions may be asserted, He writes:

Let q(x) be a propositional function whose argument is x; then we may assert
#(x) without assigning a value to x. This is done, for example, when the law of
identity is asserted in the form "A is A,"'03

That propositional functions are objects ofjudgement and may, thus, be asserted raises two

questions: why does Russell make this claim and how is one to understand the assertion of

propositional functions?

Russell offers (at least) one reason for making this claim, viz,, that, to the extent that

mathematical proofs involve tracts of reasoning that make essential use of open formulae,

mathematical proofs make essential use of asserted propositional functions. Thus, he writes in

ML:

The distinction between asserting qx and asserting (x). q5x was, I
believe, first emphasized by Frege (1893, p. 31). His reason for introducing the
distinction explicitly was the same which caused it to be present in the practice
of mathematicians, namely, that deduction can only be effected with real
variables, not with apparent variables, In the case of Euclid's proofs, this is
evident: we need (say) some one triangle ABC to reason about, though it does
not matter what triangle it is, The triangle ABC is a real
variable; and although it is any triangle, it remains the same triangle
throughout the argument. But in the general enunciation the triangle is an
apparent variable. If we adhere to the apparent variable, we cannot perform
any deductions, and this is why in all proofs real variables have to be used,
Suppose, to take the simplest case, that we know "#x is always true", that is,
"(x). fx", and we know "qOx always implies qx", that is, "(x), { (x implies x)".
How shall we infer " qx is always true", that is, (x). @x"? We know it is always
true that, if #x is true and if &x implies qx, then @x is true. But we have no
premisses to the effect that fx is true and qx implies @x; what we have is: qx
is always true, and 'x always implies qx, 1.: order to make our inference, we
must go from ",fx is always true" to ,x, and flom "4bx always implies @,x" to
"'fx implies @x", where the x, while remaining any possible argument, is to be
the same in both. Then, from "#x" and ",fx implies @x", we infer " ,x"; thus

103Principia, p. 92,
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@x is true for any possible argument and therefore is always true. Thus, in
order to infer "(x). iox" from '(x)#x" and "(x).{fx implies @cx'", we have to pass
from the apparent to the real variable and then back again to the apparent
variable. This process is required in all mathematical reasoning which
proceeds from the assertion of all values of one or mo,. pn;positional functions
to the assertion of all values of some other propositional function, as, for
example, from "all isosceles triangles have equal angles at the base" to "all
triangles having equal angles at the base are isosceles", In particular, this
process is required in proving Barbara and the other moods of the syllogism,
In a word, all deduction operates with real variables ... '"

It is important to note that even if it were correct that mathematical proofs could only be

formalised by making use of open formulae, 5"' one would not be compelled to make appeal to

the yet-to-be-explained notion of asserted propositional function. By speaking from a

metatheoretic point of view, one could easily explain the validity of such free variable reasoning

-- characteristic of, for instance, El subproofs -- by appealing to the fact that the logical rules of

inference are such that, if a given model M and assignment S to the free variables satisfy the

formulae figuring on the first n lines of a proof, then M a:-d S will satisfy the first n+1 lines of

the proof Needless to say, Russell does not readily ascend to such a metatheoretic point of

view.

Next, consider the second question how is one to understand the assertion of

propositional functions, According to Russell, if Xx(F(x)-,G(x)) is a propositional function,

then one is to understand its assertion as one understands the assertion of whatever is meant by

"Any F is G",'" More generally, if ,x.H(x) is a propositional function, then one is to

understand its assertion as one understands the assertion of whatever is meant by "Anything is

'MML, pp, 157-8.

'•OThe formal system that Quine presents in Mathematical Logic does not need open
formulae,.

'fln the following discussion, I abuse the distinction between a schema and a sentence
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H". In response to this answer, one may ask in turn how is one to understand an)y. Russell has

an interesting answer to this question:

Any [IF] denotes only one F, but it is wholly irrelevant which it denotes, and
what is said will be equally true whichever it may be. Moreover, any [F]
denotes a variable [F], that is, whatever particular [F] we may fasten upon, it is
certain that any [F] does not denote that one; and yet of that one any
proposition is true which is true of any [F].[Principles, §601

Thus, where 'F' is to be instanced by a count noun, any F is some 'undetermined' or 'arbitrary'

F, but no 'particular' one, Russell speaks here as if he were either expressing a contradiction of

the form '3x[F(x) & Vy(F(y) -, --x=y)]', or committing himself to the existence of some

mysterious object 'any F' which is not an F but may be taken to be one for argument's sake,

Since, for any propositional function X x(F(x)-G(x)), one is to understand its assertion

as one understands the assertion of whatever is meant by "Any F is G", Russell explains how

one is to understand a real variable x in terms of how one understands any. Considering

numerical variables, he writes:

Originally, no doubt, the variable was conceived dynamically, as
something which changed with the lapse of time, or, as is said, as something
which successively assumed all values of a certain class. This view cannot be
too soon dismissed. If a theorem is proved conceming n, it must not be
supposed that n is a kind of arithmetical Proteus, which is I on Sundays and 2
on Mondays, and so on, Nor must it be supposed that n simultaneously
assumes all its values. If n stands for any integer, we cannot say that n is 1, nor
yet that it is 2, nor yet that it is any other particular number. In fact, n just
denotes any number, and this is something quite distinct from each and all of
the numbers, It is not true that I is any number, though it is true that whatever
holds of any number holds of 1. The variable, in short, requires the indefinable
notion of any ...[Principles, §87]

In this respect, if Xx.H(x) is a propositional function, then to assert that H(x) is to ascribe

Xx.H(x) to any x or to an arbitrary x.

It is noteworthy that Russell later offers a slightly different gloss on this matter. Rather

than saying that to assert that H(x) is to ascribe Xx.H(x) to any x, he says that to assert that H(x)
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is to assert some 'undetermined' value of the propositional function X .H(x), but not any

'definite' value -- that is, it is to assert any value of Xx,H(x). Thus Russell writes in

Principia:'0 7

Any Value " x-" of the function jx can be asserted. Such an assertion of an
ambiguous member of the values of rx is symbolised by "i-, Ox."'• 8

When we assert something containing a real variable, as in e.g, ",x=-x,"
we are asserting any value of a propositional function,'"

When we assert something containing a real variable, we cannot strictly
be said to be asserting a proposition, for we only obtain a definite proposition
by assigning a value to a variable, and then our assertion only applies to one

'finite case, so that it has not at all the same force (rv hefore. When what we
assert contains a real variable, we are asserting a wholly undetermined one of
all the propositions that result from giving various values to the variable, It will
be convenient to speak of such assertions as asserting a propositional function.
The ordinary formulae of mathematics contain such assertions; for example
"sin'x + cos'x = 1" does not assert this or that particular case of the formula,
nor does it assert that the formula holds for all possible values of x, though it is
equivalent to this latter assertion; it simply asserts that the formula holds,
leaving x wholly undetermined;" 0

In this respect, the difference between this later gloss and the earlier one is a matter of which

notion any is taken to apply to."'

IU7"^x"it represents Russell's circumflexed x.

'o•Principia, p. 17,

'"1 ibid, p. 18.

o"0ibid. p. 18.

'"'In ML Russell appears to offer a combination of the two glosses. His explanation of the
distinction between any and all begins as follows:

Given a statement containing a variable x, say "x=x", we affirm that this
holds in all instances, or we may affirm any one of the instances without
deciding as to which instance we are affirming. The distinction is roughly thr
same as that between the general and the particular enunciation in Euclid. The
general enunciation tells us something about (say) all triangles, while the
particular enunciation takes one triangle and asserts the same thing of this
one triangle. But the triangle taken is any triangle, not some one special
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In any case, both the earlier and later glosses on how one is to understand the assertion

of a propositional function are difficult to comprehend To the extent that Russell takes such

assertions to figure in LT(PM), this difficulty besets this later logical theory as much as it

does LT(POM).

The difficulties discussed here of course pale beside the problem that LT(POM) gives rise to

the paradoxes. I turn to consider Russell's solution to this problem in the next chapter. I should

note nowv 'hat in addition to resolving the problem, the solution to a co"•in extent, removes the

third and fourth difficulties discussed above. The other difficulties, however, are inherited

unaffected by LT(PM),

triangle; and thus, although, throughout the proof, only one triangle is dealt
with, yet the proof retains its generality. If we say: "Let ABC be a triangle,
then the sides AB and AC are together greater than the side BC", we are saying
something about one triangle, not about all triangles; but the one triangle
concerned is absolutely ambiguous, and our statement consequently is also
absolutely ambiguous. We do not affirm any one definite proposition, but an
undetermined one of all the propositions resulting from supposing ABC to be
this or that triangle, This notion of ambiguous assertion is very important, and
it is vital not to confound an ambiguous assertion with the definite assertion that
the same thing holds in all cases.

The distinction between (1) asserting any value of a propositional
function and (2) asserting that the function is always true is present throughout
mathematics, as it is in Euclid's distinction of general and particular
enunciations. In any chain of mathematical reasoning, the objects whose
properties are being investigated are the arguments to any value of some
propositional function.[ML, p, 156]
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Chapter 3

The Vicious-Circle Principle

I claimed at the beginning of the last chapter that the logical theory of Principia, LT(PM), may

be understood as the result of modifying the logical theory implicit in Principles, LT(POM), in

order to abide by Russell's vicious-circle principle. Therefore, in order to understand LT(PM)

one should first understand LT(POM) as well as the vicious-circle principle. We briefly looked

at LT(POM) in the last chapter. I now turn to examine the vicious-circle principle. This

principle was Russell's considered solution to the paradoxes. As is well known, he entertained

several other possible solutions before he arrived at this one, To provide a little context, I very

briefly survey the more salient of these early solutions before examining the vicious-circle

principle in detail,

1 The Early Solutions

The survey covers four of the early solutions, The first solution, rather surprisingly, appears in

an appendix to Principles under the rubric the Doctrine of Types: it is a version of simple type

theory and, accordingly, it is a logical theory itself, different in spirit as well as in detail from

LT(POM), Qua simple type theory, it avoids giving rise to the set-theoretic paradoxes by

failing to countenance structures like 'xex' as well-formed, Although it resembles standard

versions of simple type theory such as that presented by Tarski in his "Wahrheitsbegriff" -- at

least to the extent that it contains a hierarchy of types consisting of a bottom type of individuals

(LT(POM)'s Things) and then a type of classes of individuals, and then a type of classes of

these, and so on -- the Doctrine of Types differs from these versions in several respects, Most

notably, unlike these others, it distinguishes between the range of significance of, say, a
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monadic propositional function and the type of a term -- in Russell's sense -- that may fall under

it, By its lights, such a range is a superset of such a type. The Doctrine of Types differs further

in that, by its lights, all the ranges of significance form a type, the numbers form a type, and the

propositions form a type, where each of these types lies outside the hierarchy mentioned above,

Because the propositions form a type, the Doctrine of Types is inconsistent,"2 and for this

reason alone, Russell rejected it as a viable solution."'

Russell offers the three other solutions in his 1905 "On Some Difficulties in the Theory

of Transfinite Numbers and Order Types", These solutions all concern LT(POM)'s

comprehension axioms. Recall that such axioms are appealed to in order to derive Cantor's

paradox, Burali-Forti's paradox, Russell's class and propositional function paradox, and his

proposition paradox. For this reason in 1905 Russell suspects that they are responsible for the

paradoxes, More precisely, since he in some sense takes such axioms as a required part of any

correct formalisation of logic, he suspects that they must be mischaracterised in some way and

that such a mischaracterisation is responsible for the paradoxes. If this is the case, then in what

does such a mischaracterisation consist? Consider how LT(POM) characterises the

comprehension axioms, Since it characterises them as unrestricted, they all have the form

3fVv,... Vv,[f(v,, .. ,v ----1I
where '----' represents any formula not containing the variable f free but possibly containing

other variables free among which of course may be any or all of v,, .., , v,. ' Call such a

"2See Principles, §500, or the discussion of Russell's proposition paradox in Chapter 1, § 1,

"3Others have claimed that Russell rejected the Doctrine of Types also because it does not
treat of the semantic paradoxes and because its ranges of significance appear rather ad hoc,
See C, Chihara and I. Copi.

""Since LT(POM) contains something like second-order quantification, for any given n, it
may be thought to have a single comprehension axiom having the form ' VGBfVv, .., Vv,[f(v, ,
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formula an s-formula. In this regard, in 1905 Russell specifically suspects that the

mischaracterisation of the comprehension axioms consists in LT(POM)'s countenancing all

possible formulae -- satisfying the constraint of not containing the variable f free -- as s-

formulae when only a very restricted collection of such formulae may be so countenanced, If

his suspicion is correct, then one must determine which of the possible formulae are to be

countenanced as s-formulae in order to arrive at the proper characterisation of the

comprehension axioms. Toward this end, Russell puts forward in "On Some Difficulties" three

possible theories that make such a determination: these are the three qnlutions with which we

are at present concerned, "'

The first of the three solutions is the zigzag theory. Briefly, according to this theory, a

formula is to be countenanced as an s-formula if and only if such a formula is fairly simple.

This particular determination is motivated by the circumstance that appeal to comprehension

axioms whose s-formulae are rather complicated or recondite such as '-'xEx' engenders

paradox whereas appeal to those axioms whose s-formulae are in some sense simple never

does. Of the three theories put forward in "On Some Difficulties", the zigzag theory is the least

worked out, Russell failed to arrive at anything like an explanation of the conditions for a

formula's being 'fairly simple', Indeed, no one since has succeeded in arriving at such an

,v) " G]' as opposed to an infinite number of such axioms, each of which satisfies the
appropriate schema. However, this point is rather insignificant since LT(POM) in any case
requires a different comprehension axiom for each n. There is no escaping an infinite
axiomatisation. As we shall see, the case is much worse for LT(PM),

"'I51 should note that rather than carrying out his discussion of these matters in "On Some
Difficulties" at the metalinguistic level, Russell as always does so at the object level. Thus,
rather than asking which formulae are to be countenanced as s-formulae, he asks which
propositional functions determine classes or whatever else are taken to be comprehended by the
axioms in question. He calls the propositional functions that do determine these items
predicative. This is a word that acquires at least two other usages later on.
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explanation, Some suggest that Quine is the one who has come the closest to doing so by

means of his set theory New Foundations. ",

The second of the three solutions is the theory of the limitation of size According to

this theory, a formula is to be countenanced as an s-formula if and only if the item such a

formula specifies is not too large. This particular determination is motivated by the

circumstance that the set-theoretic and mixed paradoxes all make reference to very large

classes or 'very large' propositional functions such as the class of all classes, the class of all

ordinals, 'he class of all non-self-membered classes, and the prmoositionril function that applies

to all and only non-self-satisfying propositional functions. Unfortunately, Russell did not

succeed in arriving at a clear explanation of the conditions for a formula's not specifying an

item that is too large. Interestingly, some have understood Zermelo-Fraenkel set theory as

providing such an explanation, "' By their lights, its axioms of Aussonderung, pairing, power-

set, union, and replacement determine collectively which formulae are to be countenanced as s-

formulae in such a way that, given that certain sets are taken to exist, these axioms affirm the

existence of other sets whose size is, roughly speaking, not very much larger than that of these

given sets,

The third solution is the substitutional theory, According to this theory, no formula is

to be countenanced as an s-formula, Clearly, this theory is the most revisionary of the three,

Unlike LT(POM), it does not countenance propositional functions or classes, In their stead, it

countenances a primitive operation of substitution S which is su'A that given any terms c and d

and a proposition p containing c as constituent, S(p,d,c) is the proposition that results from

"6For instance, see Godel, "Russell's Mathematical Logic", p. 125.

"77Azriel Levy is one. However, Michael Hallett in Cantorian Set Theory and Limitation of
Size argues against such an understanding,
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substituting d for c in p. The motivation behind this theory is simply that all of the paradoxes

make reference to propositional functions or classes. After expending much effort to work out

the theory, Russell eventually abandoned it for two reasons: the theory is technically very

cumbersome and it leads to contradicticns of its own.

2. Vicious Circularity

In response to Russell's "On Some Difficulties", H. Poincard put forward his own account of

which formulae are to be countenanced as s-formulae in his 1906 "Les math6matiques et la

logique". According to this account, a formula is to be countenanced as an s-formula if and

only if it is not what he designates viciously circular, Poincar6 put forward this account

because he took there to be some sort of pernicious circularity on a par with definitional

circularity implicitly involved in the argumetas to the paradoxes. The circularity in question

might be taken as the circularity pointed up by Russell in his discussion of self-reproductive

processes."' In this light, it is not surprising that later, in his 1906 "On 'Insolubilia'", Russell

acceded to Poincarm's account,

At this point, even if one has some understanding of the circularity that both Poincard

and Russell point up, one may be prompted to ask for an explanation of the conditions for a

formula's being viciously circular, Russell to a certain extent offers an answer to this question

when he states his celebrated vicious-circle principle, I employ the qualifier "to a certain

extent" because such an explanation should, strictly speaking, speak at the metalinguistic-level

whereas Russell as always states the principle at the object-level. The principle may, however,

be construed metalinguistically.

"'See the discussion about self-reproductive processes at the end of §2, Chapter 1. I
discuss the nature of the circularity involved near the end of this chapter,
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As one may have expected, Russell provides more than one rendering of the vicious-

circle principle: at least eight appear in the corpus. Here are four of them.

Whatever involves an apparent variable must not be among the values of that
variable, "9

Whatever involves all of a collection must not be one of the collection, 2o

If, provided a certain collection had a total, it would have members only
definable in terms of that total, then the said collection has no total,' 2'

More generally, given any set of objects such that, if we suppose the set to have
a total, it will contain members which presuppose this total, then such a set
cannot have a total,' 22

Some have remarked that these renderings do not express a single principle. In "Russell's

Mathematical Logic", GCdel claims that 'corresponding to the phrases "definable only in terms

oP', "involving", and "presupposing", we have really three different principles .,,'..3 Others

have reinarked that none of the renderings are particularly clear.

In order to arrive at a clear understanding of Russell's answer to the question about the

conditions for a formula's being viciously circular, one must examine his vicious-circle

principle in detail, I do so by examining two of the above renderings: the rendering that

employs "presuppose" and the rendering that employs "definable", For convenience, I dub

these VCPI and VCP2, The examination will show that, although there is a sense in which

G6del's claim is correct, it is not very significant.

"9"On 'Insolubilia'"', p. 198

'° OML, p. 155.

'21ibid

'2 Principia, p. 37.

"'3Kurt Gddel, C(olleiedc Works, Volume II, p. 127.
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Two points should be noted before I start. First, as Quine has argued,'2 definition is

best understood as what occurs when a new notation is introduced as short for an old one.

Thus, to the extent that VCP2 really concerns comprehension axioms, its employment of

"definable" is misleading. That is, for any given comprehension axiom c, c's s-formula is not a

definiens and, so, c does not define anything, Rather, it affirms the existence of some item i

which satisfies a certain formula -- ie., the formula following c's outer existential quantifier,

Since it is usually the case that there can be only one such item, c may also be understood to

specify the item i. In this respect, I shall talk about specification rather than definition in the

following.

Secondly, although it may not yet be clear in what a formula's being viciously circular

consists, it should be rather clear what such circularity is not. In particular, since definition is

not really at issue, the circularity in question is not the circularity of 'smuggling in the

definiendum into the definiens'. '" Likewise, since the arguments to the paradoxes do not, on

the face of it, commit petitio principii, it is not the circularity of smuggling a conclusion among

premisses. I should remark that because of these circumstances, Quine concluded that, to the

extent that Russell and Poincar6 thought that they had observed some circularity responsible for

the paradoxes, they were confused, Qutine of course did not attend to the details of LT(POM)

and, as a result, his assessment is not altogether fair -- as we shall see,

(a) VCP I:

Recall Russell's expression of VCPl:

'24Set Theory and its Logic, p, 242,

'25ibid
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More generally, given any set of objects such that, if we suppose the set to have
a total, it will contain members which presuppose this total, then such a set
cannot have a total.

In order to become clear about what Russell intends VCPI to say, one should consider some of

the expressions that it employs. To begin with, consider 'set', Russell clearly intends this

expression to have a meaning that is more general in its application than that which it currently

has (or may be taken to have), viz,, the concept of set as explained by Zermelo-Fraenkel set

theory, In addition to intending 'set' to mean such a concept, Russell intends it to mean the

concepts collection, extension of a predicate, and proper class. To this extent, perhaps the

expression' 'totality' might suit his intentions more aptly, ~" Next, consider 'member'. Russell

intends this expression to have a meaning that is correlatively more general in its application

than that which it may currently be understood to have, viz,, the concept of member of ZF set.

In addition to intending 'member' to mean such a concept, Russell intends it to mean the

concepts part, component, constituent, subset, subclass, and so on. Next, consider the

expression 'to have a total'. Clearly, by Russell's lights, to say of an item like a collection that it

has a total is to say of it that it is a term in the realm of being, In other words, it is to say that

the item may play the logical role of subject and, as such, the quantifier and substitution rules

apply to it in the usual way. Finally, consider 'presuppose'. Russell intends this expression to

mean a very important metaphysical relation -- that of presupposition. Although he does not

write much that is explicit in order to explain the nature of this relation, his usage of the

expression makes it evident that presupposition is a relation of ontological dependence in the

sense, for instance, that the definiteness of wholes may be taken ontologically to depend on the

definiteness of their parts and the definiteness of sets may be taken ontologically to depend on

'26Here and just below I use the expressions 'totality' and 'item' as Russell uses 'class as
many' -- that is, I treat them as a Boolos plural.
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the definiteness of their elements. The relation, as such, is irreflexive and at least as strong as

supervenience -- for if c ontologically depends on d, c would not exist if d did not.

Having these glosses, one may rephrase VCPI as follows: Given any totality T such

that, if we suppose T to be a term, it will contain terms that ontologically depend on it, then T

cannot be a term. Better: No totality that is a term may contain a term which ontologically

depends on it. Given the notion of well-foundedness from set theory,'" one may rephrase

VCPI still more succinctly: All totalities that are terms are well-founded. Thus understood,

VCPI implies that no wholes may be proper parts of themselves and that no sets may be

members of themselves or members of ... of members of themselves,

Admittedly, VCPl so understood enjoys a certain intuitive appeal. Many in the history

of philosophy have taken it as correct. Leibniz implicitly appealed to it in one of his arguments

for the existence of so-called corporeal substances. ' " Kant implicitly appealed to it in his

argument to the thesis of the second antinomy. '" Russell and Poincar6 apart, more recently

GOdel has claimed that VCPl is plausible. 30o Notwithstanding the intuitive appeal that it enjoys,

consistent set theories have been developed -- more precisely, consistent relative to ZF's

consistency -- that deny VCPI by asserting the existence of non-well-founded sets. Moreover,

since the axiom of regularity is independent of ZFC, ZFC itself has nonstandard models

containing non-well-founded sets. To this extent, one might perhaps deny VCP I without

'"Roughly speaking, x is well-founded if and only if each of the branches of its membership
tree is finite in length, Thus, each begins with either the null-set or an urelement.

' 28See Leibniz's letter of April 1687 to Amault, C.I. Gerhardt, ed., G. W Leibniz: Die
Philosophischen Schrifien, Vol. Ii, p. 96.

'tThe Critique of Pure Reason, A434/B462 to A444/B472.

130"Russell's Mathematical Logic", p, 127,
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contradicting oneself Needless to say, these points would not sway the conviction of anyone

who was impressed by its intuitive appeal,

Importantly, Russell takes VCP1 thus understood as incompatible with many of the

type-free features of LT(POM), Indeed, he argues from VCPI and certain LT(POM) claims

about propositions to the conclusion that no propositional function may apply to itself with

sense. The argument goes roughly as follows:"' Let Xxx be a monadic propositional

function. By Russell's lights, "a function is not a well-defined function unless all its values are

alreac'y well-defined,""' Suppose that the proposition 4c is a value of Xxx., Since the well-

definedness of x, 4x depends on the prior well-definedness of 4c, Xx,4x presupposes #c.

Since c is a constituent of #c, 4c presupposes c. By the transitivity of presupposition, Xx. 4)x

presupposes c. By its irreflexivity, xij x and c are distinct. At this point, Russell concludes

that Xx,•x may not apply to itself with sense. In other words, he concludes not that the

complex 4(4,x.xx) is false but rather that it is ill-formed and, thus, that the judgement that

x., x is ( cannot be expressed. One may ask of course how he justifies this particular

conclusion when it appears, on the face of it, that he should rather conclude that the complex

4(x,4x) is false,"' This question is difficult since its answer would probably appeal to special

features of presupposition as Russell conceives this relation and to details of the background

logic within which his argument is supposedly carried out, 34 It is noteworthy that Zermelo-

Fraenkel set theory with the axiom of regularity respects VCP1 in the sense that all the sets that

"'See Principia, p. 39,

"'Principia, p. 39, my italics.

"'33Hylton in his RIAP seems to think that the conclusion follows from the argument, See
RIAP, pp, 300-1,

"•In so arguing, perhaps he is already using a type-theoretic logic,
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it talks about are well-founded,"' This theory, however, does not realise in any way this last

conclusion that Russell takes to follow from VCPI.

Not surprisingly, several interesting claims also incompatible with the type-free features

of LT(POM) follow in turn from Russell's conclusion, I mention three, The first is that,

contrary to the position of LT(POM) that for any propositional function kx.,x and for any term

c in the realm of being, Xx, x may be predicated with sense of c and such a predication

produces either the proposition or the propositional function #c, x4)x may only be predicated

with sense of those terms belonging to some proper subclass of all the terms in the realm of

being. As is well-known, Russell calls such a proper class a type. The second claim is that,

contrary to the position of LT(POM) that for any propositional function x, x. x, the variable x

that figures in ,x. xx is completely unrestricted, such an x must be restricted to range only over

the proper subclass or type of terms of which Xx, 4x may be predicated with sense. This claim,

strictly speaking, only follows from the conjunction of Russell's conclusion with the additional

assumption that a variable figuring in a propositional function must be restricted to range over

only those terms of which the function may be predicated with sense, Although the assumption

is reasonable, one should recall that LT(POM) violates it with respect to the fourth difficulty

discussed in Chapter 2. The third claim is that, contrary to the LT(POM) position that there is

only one kind of variable, to the extent that there are propositional functions having different

types of terms of which they may be predicated with sense, there will be variables of different

kinds ranging over these different types,

Given that any propositional function Xx.4x has associated with it some type -- that is,

the type of terms of which it may be predicated with sense -- any term c in the realm of being

'"I am only considering the theory's standard model here,
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may be understood to fall under one or more types, viz,, the types associated with the

propositional functions which may be predicated of c with sense. In order to avoid confusion,

for a given propositional function x. 4x, call the type of terms of which it may be predicated

with sense its argument-type, and, for a given term c, call the type or types that c may fall under

simply c's type(s)."'6

At this point, one may be prompted to ask how the types are all configured. By

Russell's lights, VCPI at least partly determines the answer to this question, Not only does he

take VCP1 to require that the argument-type t uf a gi, en propositional function f be restricted

so as not to contain, for instance, f itself, but he takes VCPI to require that t not contain any

other propositional function g whose own argument-type contains f. More generally, Russell

takes VCPl to require that the argument-types of propositional functions be configured so that

no sequence of the following kind occur: f, applies to f, with sense, f, applies to f3 with sense,

.,Q, •~ applies to f, with sense, f, applies to f, with sense, In other words, the types must be

configured so as to realise a well-founded ordering. There are of course many kinds of well-

founded ordering and, so, one may ask which particular ordering is so realised, Unfortunately,

even by Russell's lights, VCP1 does not have anything to say to this question. Also, since the

circumstance that the types realise a w,,ell-founded ordering does not determine whether or not

the types are cumulative, one may ask whether or not they are. That is, one may ask whether or

not the types are such that, for any two types t, and t, where t, is greater than (according to the

ordering) t,, some of the items falling under t, may also fall under t,. Here, again, VCP1 even

by Russell's lights does not have anything to say,

It is noteworthy that many have taken the following configuration of types as the most

"6 For the sake of simplicity, I have been focusing on monadic propositional functions.
However, analogous claims apply to polyadic propositional functions,
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plausible well-founded ordering (some have even taken it as the only possible one):'" First,

consider the collection of all terms in the realm of being that Russell calls Things, These are

the terms that do not apply to anything. Take this collection as a type and call it level-0. Next,

consider the collection of monadic propositional functions that apply to all and only level-0

items with sense. Take this collection as a type and call it level-i. Next, consider the collection

of monadic propositional functions that apply to all and only level-i items with sense. Take this

collection as a type and call it level-2, Clearly, this procedure may be iterated indefinitely.

Moreover, it may be extended without difficulty to cover polyadic propositional functions and

propositions. The result of such an iteration and extension is a well-founded ordering in which

there figures every type of every term in the realm of being, This ordering resembles the simple

hierarchy of types presented by Tarski in his "Wahrheitsbegriff' and by Godel in his 1931 paper

at least to the extent that its types are noncumulative and, since there is a least type -- i.e., level-

0 -- as opposed to several minimal types, the types of the monadic propositional functions are

well-ordered.

There are two points to make about the configuration of types described above. On the

one hand, the description is only a sketch, In order to provide a more precise characterisation

of the configuration, one would have to specify how the configuration relates to the logical

system that concerns it. For instance, suppose that for some fixed y,' X.,xxy' means some

monadic propositional function f in the configuration, Although the above description indicates

roughly how the type of f relates to its argument-type, it says nothing about how the type of the

parameter y relates to these two types. Needless to say, in order to provide a detailed

characterisation of the configuration one would have to specify other important features of it as

'"Indeed, Peter Hylton in his RIAP incorrectly takes VCPI to necessitate it. See RIAP, pp.
301-2,
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well. On the other hand, since VCPI, even by Russell's lights, already underdetermines the

particular kind of well-founded ordering that the types realise as well as whether or not the

types are cumulative, it afortiori underdetermines such relatively fine features of the

configuration.

Now that we have some understanding of VCPI, we should return to the question

posed at the beginning of this section about an explanation of the conditions for a formula's

being viciously circular (and, hence, failing to be an s-formula). In the light of what we have

seen, we may expect the explanation to go roughly as follows: a formula is viciously circular if

and only if it attempts to express a predication that, according to VCPI and the claims that

Russell takes to follow from it, cannot be expressed, In this respect, formulae of the following

kind whose variables are not restricted to types that form a well-founded ordering are viciously

circularity: x(x), x(y)Ay(x), x(y)Ay(z)Az(x), x ex

It is noteworthy that, in this light, the comprehension axioms that are appealed to in the

arguments to the set-theoretic and mixed paradoxes all involve s-formulae that are viciously

circular, To the extent that no viciously circular formula is to be countenanced as a legitimate

s-formula, the deduction of these paradoxes, at least by means of the arguments described in

Chapter 1, §2, is obstructed. To this extent, one may say that violation of VCPI gives rise to

such paradoxes, where such violation may be taken to consist in employing viciously circular

formulae as s-formulae,' 3'

(b) VCP2:

'"One should conclude further that insofar as a viciously crcular formula attempts to
express a predication that it cannot express, such a formula -- far from being considered as a
legitimate s-formula -- cannot even be considered as well-formed.
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Recall Russell's statement of VCP2:

If, provided a certain collection had a total, it would have members only
definable in terms of that total, then the said collection has no total,

In order to become clear about what Russell intends VCP2 to say, one should consider some of

the expressions that it employs. To begin with, consider its expressions 'collection', 'member',

and 'had a total', Clearly, these may be understood in terms of the glosses at which we arrived

when we looked at VCPI, Next, consider 'definable', As we saw above, it is best to read this

expression as meaning specifiable. Finally, consider 'in terms oP, Russell's application of

VCP2 maxes it clear that he intends this to mean something .. by qum,,,sfying over, in this

respect, one may rephrase VCP2 as follows: No totality T may contain a term that is

specifiable only by quantifying over T.

VCP2 thus understood recommends rather clearly its own explanation for a formula's

being viciously circular (and, hence, failing to be an s-formula), viz,, that a formula F is

viciously circular when and only when, if F were to be countenanced as an s-formula, it would

contain at least one quantified variable whose range contained the term whose existence would

be affirmed by the comprehension axiom having F as its s-formula. To illustrate, consider the

following familiar comprehension axiom from standard second-order logic that affirms the

existence of the property of being a natural number (' O' denotes zero and 's' denotes the

successor function);

1NVz[N(z) - 'VG{(G(0) A Vu(G(u)-,G(s(u)))) - G(z))]

The axiom's s-formula contains the quantified variable G that ranges over the term x,xNx

whose unique existence the axiom affirms, As such, by VCP2's lights, the axiom's s-formula is
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viciously circular and, so, is not to be countenanced as a legitimate s-formula.,3 " 4o

Not surprisingly, VCP2 thus understood is inconsonant with many of the type-free

features of LT(POM). It is inconsonant in at least three respects, First, to the extent that there

are s-formulae containing quantified variables, VCP2 requires that there be some restricted

variables since, by its lights, only restricted variables may occur bound in s-formulae, Again,

call the range of any of such restricted variables a type, Secondly, if for eveiy s-formula

containing a bound variable, there is another s-formula containing a bound variable that ranges

over the item the first s-formula specifies, then, since the second bound variable must have a

type different from that of the first, there must be an infinite number of restricted variables

whose types are different one from the other. Note that this claim does not imply that every

variable must be restricted -- a situation different from that associated with VCP1, Thirdly,

recall that, according to LT(POM), a propositional function is the result of taking a proposition

and replacing one or more of its constituent terms with one or more variables. In this respect,

insofar as there are an infinite number of restricted variables whose types are different one from

the other, there will be an infinite number of propositional functions whose argument-types are

different one from the other. Each of these functions will apply with sense to only some of all

the terms in the realm of being,

Given that VCP2 reqwures types of its own, one may be prompted to ask how such

types are all configured. VCP2 partly determines the answer to this question, For not only

'39One should note that the range of the variable G in thle above s-formula is just the totality
T of which VCP2 forbids existence,

'40 0ne may recognise that contemporary logicians call an s-formula that is viciously circular
in this sense (as well as its containing comprehension axiom) impredicative. They call an s-
formula that is not so viciously circular (as well as its containing comprehension axiom)
predicative. Note that this is a sense of'predicative' that differs from Russell's usage. (Russell
uses 'predicative' in yet another way in Principia as we shall see in Chapter 5,)
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does VCP2 require that there be no specification of a term t, via some formula F containing

quantified variables v,, ,., v,, some of whose types contain t,, but it requires that there be no

specification of a term t, via some formula F containing quantified variables vi, ,.,, v,, some of

whose types contain a term t2, which is in turn specified via a formula F' containing quantified

variables w,, ... , w,, some of whose types contain t,. More generally, VCP2 requires that its

types be configured so that no sequence of the following kind occur: t, is specified 'in terms of

the quantified variables v, ,..., v,, some of whose types contain t2, which is specified 'in terms

of the quantified variables w,, .. , w,, some of whose types contain t , ... t,, which is specified

'in terms of the quantified variables z,, ... , ze, some of whose types contain t,, In other words,

VCP2 requires that its types be configured so as to realise a well-founded ordering, There are

of course many kinds of well-founded ordering and, so, one may ask which particular ordering

is so realised, Unfortunately, VCP2 does not have anything to say to this question. Also, since

the circumstance that the types realise a well-founded ordering does not determine whether or

not the types are cumulative, one may ask whether or not they are. Here, again, VCP2 does not

have anything to say,

Interestingly, many have taken the following configuration of types as the most

plausible well-founded ordering (some have even taken it as the only possible one): First,

consider the collection of all terms in the realm of being that Russell calls Things. Take this

collection as a type and call it order-O. Next, consider the collection of propositional functions

that apply to all and only order-0 items with sense and whose existence need not be affirmed by

comprehension axioms whose s-formulae contain 4,.ntified variables ranging over items not

falling under order-0, The propositional functions of this collection must exist if any do. The

collection is closed under the operation of specifying a propositional function by means of a

comprehension axiom whose s-formula possibly contains bound variables ranging over order-0,
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free parameter variables ranging over the collection, but no bound variables ranging over it.

Note that since such an s-formula contains no bound variables ranging over the collection,

VCP2 does not require that a propositional function specified by means of it fall wider a type

different from that of any of its possible free parameter variables. Take the collection in

question as a type and call it order-1. Next, consider the collection of propositional functions

that apply either to all and only order-I items with sense or to all and only order-0 items with

sense or to both, and whose existence need not be affirmed by comprehension axioms whose s-

formulae contain bound variables ranging over items not falling under order-0 or under order-

1. This collection is closed under the operation of specifying a propositional function by means

of a comprehension axiom whose s-formula possibly contains bound variables ranging over

order-0 or order-I, free parameter variables ranging over the collection, but no bound variables

ranging over it, Note that since such an s-formula contains no bound variables ranging over the

collection, VCP2 does not require that a propositional function specified by means of it fall

under a type different from that of any of its possible free parameter variables. Take the

collection in question as a type and call it order-2. Clearly, this procedure may be iterated

indefinitely, Moreover, it may be extended without difficulty to cover propositions, In this

respect, a proposition or a propositional function of order-i, roughly speaking, may be specified

by means of a comprehension axiom whose s-formula possibly contains bound variables of

orders i and orders less than i but contains no bound variables of higher orders. The result of

such an iteration and extension is a well-founded ordering in which there figures every type of

every term in the realm of being. The types are noncumulative and, since there is a least type --

i.e., order-0 -- as opposed to several minimal types, the types of the propositional functions are

well-ordered.

There are two points to make about the configuration of types described above, On the
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one hand, the description is only a sketch, In order to provide a more precise characterisation

of the configuration, one would have to specify, among other things, how the configuration

relates to the logical system that concerns it. On the other hand, since VCP2 already

underdetermines the particular kind of well-founded ordering that the types realise as well as

whether or not the types are cumulative, it afortiori underdetermines such relatively fine details

of the configuration.

Before I move on to discuss difficulties, I should note that the comprehension axioms

that are appealed to in the arguments to the semantic paradoxes all involve s-formulae that are

viciously circular in the sense of the explanation recommended by VCP2. For instance, the

argument to the liar paradox requires the existence of a proposition that says of itself that it is

false. This is affirmed by the following comprehension axiom:

3q(q - 3p(q*(p) A -'p))

where Xx. jx is some propositional function true of q and only q -- recall the discussion of the

liar paradox in Chapter 1, §2, Here, the quantified variable 'p' ranges over the proposition q

and, so, the s-formula is viciously circular, In this respect, to the extent that no viciously

circular formula is to be countenanced as a legitimate s-formula, the deduction of the semantic

paradoxes, at least by means of the arguments described in Chapter 1, §2, is obstructed. To

this extent, one may say that violation of VCP2 gives rise to such paradoxes, where such

violation may be taken to consist in employing viciously circular formulae as s-formulae.

(c) Problems:

I now consider two problems concerning VCPI and VCP2. To provide a little context, I should

summarise some of the above discussion, Around 1905-6 Russell concluded, roughly

speaking, that the modem paradoxes arise from a mischaracterisation of the comprehension
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axioms and that this mischaracterisation consists in its countenancing all possible formulae as s-

formulae when only a very restricted collection of such formulae may be so countenanced.

Following Poincard, Russell took this collection to consist of those formulae that are not

viciously circular and stated his vicious-circle principle in an effort to provide an explanation

of the conditions for a formula's being viciously circular. He stated the principle in several

renderings and, so, in order to arrive at a clear understanding of the explanation that he

intended the principle to provide, I have examined two of these renderings, VCPI and VCP2,

The first problem: In the light of the examination of VCPI and VCP2, we have seen

that they offer different explanations of the conditions for a formula's being viciously circular,

Roughly speaking, by VCPl's lights, a formula is viciously circular if and only if it is a formula

of the following kind whose variables are not restricted to types that form a well-founded

ordering: x(x), x(y)Ay(x), x(y)Ay(z)Az(x), xex, By VCP2's lights, a formula F is viciously

circular when and only when, if F were to be countenanced as an s-formula, it would contain at

least one quantified variable whose range contained the term whose existence would be

affirmed by the comprehension axiom having F as its s-formula. Thus, strictly speaking,

GOdel's claim that Russell's various renderings of the vicious-circle principle express different

principles is correct, Perhaps, one may construe VCPI and VCP2 as offering explanations that

are mutually compatible in the sense that each explanation only states a possible condition for a

formula's being viciously circular and, so, a possible condition for a formula's failing to be an s-

formula. To this extent, one would have to construe VCPI and VCP2 each as indicating a

source of the modem paradoxes. This construal, however, appears incompatible with one of

Russell's positions on the nature of the solution to the paradoxes, viz., that all the paradoxes

arise from the same error and, so, their solution must be unitary. Although such an

incompatibility may be resolved by countenancing a rather disjunctive notion of error, we shall
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see a more satisfactory resolution below,

The second problem: Whereas many are impressed by VCPl's intuitive appeal -- as we

saw above -- many find it difficult to accept VCP2, Indeed, (O1del and Quine argue against it.

Thus, Gkdel writes:

If, however, it is a question of objects that exist independently of our
constructions, there is nothing in the least absurd in the existence of totidities
containing members which can be described (i.e, uniquely characterized) only
by reference to this totality,"'

Speaking of classes, Quine writes;

For we are not to view classes literally as created through being
specified -- hence as dated one by one, and as increasing in number witlh the
passage of time, ... The doctrine of classes is rather that they are there from the
start.., It is reasonable to single out a desired class by citing any trait of it, even
though we chance thereby to quantify over it along with everything else in the
universe, 2

By their lights, if propositions and propositional functions are construed realistically -- that is,

if they are construed as existing in the realm of being independently of our activities -- then they

may be specified by means of s-formulae containing quantified variables whose ranges contain

them. In other words, by their lights, VCP2 is incompatible with a realistic construal of

propositions and propositional functions.

To illustrate the point, Quine considers the description 'the most typical Yale man',

The logically explicit expression of this description involves quantified variables that range over

all Yale scores including those of the person it specifies and, as such, it violates VCP2.

However, to the extent that the relevant domain of quantification may be construed realistically,

such a description is clearly innocuous,

"J'"Russell's Mathematical Logic", pp, 127-8

'42Set Theory and its Logic, p, 243,
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Because Russell put forward VCP2, Godel and Quine conclude that Russell construed

propositions and propositional functions constructivistically. That is, they conclude that he

construed them as items that are in some sense 'constructed' by us, In this respect, perhaps

they are brought into being when we affirm their existence by means of comprehension axioms,

If so, then of course we may not use s-formulae containing quantified variables whose ranges

contain such items whose existence we are affirming.

Quine makes it clear that any attempt to give a coherent explanation of a constructivist

construal of propositions and propositional functions would likely appeal to temporal notions

and, as such, it would doubtfully succeed. For consider the difficulties encountered if, in order

to affirm the existence of a propositional function by means of a comprehension axiom, one

had to employ an s-formula containing quantified variables whose ranges contained only terms

whose existence had already been affirmed,

Of course, the consideration of such difficulties is irrelevant since it is clear that Russell

did not construe propositions and propositional functions constructivistically. By his lights,

propositions and propositional functions are terms in the realm of being which are such that

each has the nature that it does independently of the circumstances of every other term in the

realm of being. To this extent, G6del and Quine draw a false conclusion, However, their

discussion still presents us with the following problem; to explain how VCP2 may be

compatible with a realistic construal of propositions and propositional functions.

Interestingly, the two problems described above may be resolved by attending to the

details of LT(POM). Consider the second problen, ;.st. GOdel and Quine may be taken to

argue successfully that, on -- what one may call for lack of a better nomenclature -- the
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standard account of comprehension,'43 VCP2 is incompatible with a realistic construal of a

given domain of quantification. Although LT(POM)'s account of comprehension approaches

very closely the standard account, it differs from it in two salient respects. By appealing to

these two respects, one may explain how VCP2 may be compatible with a realistic construal of

propositions and propositional functions, Goldfarb points up the two respects in his RRR,

The first respect in which LT(POM)'s account of comprehension differs from the

standard account is that according to LT(POM)'s account, on an abstract level, for any

proposition or propositional function specified by means of an s-formula, the form of such a

specified term is the same as the form of the s-formula at least in the very weak sense that, if t is

a segmentable item that figures in the latter, then there will be a term in the realm of being that

is the meaning of t which figures in the former. By contrast, according to the standard account,

for any item specified by means of an s-formula, there is no interesting sense in which the form

of the item, to the extent that it may be taken to have a form, is the same as the form of the s-

formula. Goldfarb may be read as pointing up this contrast in the following:

,..the comprehension axioms for propositions and propositional functions that
are implicit in the system involve not so much the specification of these entities
as the presentation of them, One is not characterizing a proposition or
propositional function: one is giving it'44

The contrast mnay be highlighted by considering Zermelo-Fraenkel set theory, No one would

claim that, for any set specified by means of an s-formula, the form or structure of the set is the

same as that of the s-formula, At best, one would claim that the s-formula picks out all of the

'43Here, for the purposes of exposition, I am supposing there is such a thing as a standard
account of comprehension or, more precisely, a standard account of what is involved in the
affirmation of comprehension axioms, What such an account would be should become clear
from the discussion of that with which it will be contrasted: the LT(POM) account of
comprehension.

'44RRR, p. 32.
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set's members and that these alone determine its form or structure.

Although Goldfarb does not explicitly say so, the claim that, by LT(POM)'s lights, a

proposition/propositional function and its s-formula in a weak sense have the same form

follows from two features of LT(POM), First, roughly speaking, although LT(POM)'s implicit

comprehension axioms for propositions and propositional functions may be taken as quantified

biconditionals having the respective forms:

9p(p-

2fVvVv((v,,v- ---),

where ' represents any formula and '---' represents any formula containing no free

occurrence of f, these axioms may alternatively be taken as quantified identities having the

respective forms:

3p(p = . S

3 f(f= Xv,.. v,---).

In this respect, 'p' and the formula represented by ' ' are singular terms meaning the same

term in the realm of being, The same holds for f and the abstraction expression obtained by

prefixing the formula represented by '---' with the appropriate abstraction operators, That the

comprehension axioms may be taken in this alternative way follows from the ontological

commitments implicit in LT(POM)'s operation of propositional function abstraction, "'

'45The lone lambda operator acts as a nominalising device here.

'46Although I have not discussed this aspect of LT(POM), we shall see it when we look at
LT(PM)'s propositional function abstraction in Chapter 5, Strictly speaking, for any formula F
and for any variables u, ,,, ui occurring free in F, there will be the abstraction expression
represented by Xu,.,Xu.F, Then, from the identity having the form ' u,...uF = Xu,,,lu1 .F',
one may existentially generalise to obtain the statement having the form: 2f(f= Xu,,.u, 1 F), In
the case of LT(PM), the type of the variable f must be the type of the abstraction expression,
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Secondly, recall that by Russell's lights,'47 the formal language of the logical theory

perspicuously mirrors the realm of being at least in the weak sense that, for any formula

meaning some proposition, if t is a segmentable item figuring in the formula, then there will be

a term that is the meaning of t figuring in the proposition and, further, that for any propositional

function abstraction expression E meaning some propositional function, if t is a segmentable

item figuring in the formula from whose abstraction E results, then there will be a term that is

the meaning of t figuring in the propositional function, It should be clear that this second

feature of LT(POM) in conjunction with the first implies the claim in question, viz., that a

proposition/propositional function and its respective s-formula in a weak sense have the same

form.

The second respect in which LT(POM)'s account of comprehension differs from the

standard account is that, according to LT(POM)'s account, a variable qua term in the realm of

being presupposes in Russell's sense the range over which it varies as well as the terms

belonging to this range, Goldfarb argues toward this claim in RRR Indeed, he suggests the

even stronger claim that, according to LT(POM)'s account, a variable is identical to its range,

We saw, however, in Chapter 2 that this is impossible.

Before we look at Goldfarb's argument, we should see what follows from the claim at

hand, Briefly, suppose the negation of VCP2. Then there is a comprehension axiom, say, of

the following form whose s-formula contains a quantified variable g whose range contains the

term f whose existence the axiom affirms:

Bfypvtn...Vvno(f(vi,..ev ) cl (g)(---g---))

By the claim pertaining to the first respect -- call it claim I -- the propositional function f has

'47See Chapter 1, § 1.

__
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the same form as the s-formula at least to the extent that the variable g must figure in f, Hence,

f presupposes g, By the claim pertaining to the second respect -- call it claim 2 -- g

presupposes the terms belonging to its range and, so, g presupposes f, By the transitivity of

presupposition, f presupposes itself, Since presupposition is irreflexive, this consequence

clearly repugns VCP1, Thus, insofar as VCPI, claim 1, and claim 2 are held, the original

supposition must be rejected, In other words, VCPI together with claims 1 and 2 implies

VCP2,

Now, consider Goldfarb's argument to claim 2:

I wish only to point to a consequence of having variables that lack complete
generality. Once such variables are used, the question of the nature of the
variable (as an entity) becomes far more urgent, Different variables can have
different ranges; it then appears that our understanding of a proposition or a
propositional function that contains quantified variables will depend quite
heavily on an understanding of what those ranges are, The variable must carry
with it some definite information; it must in some way represent its range of
variation, Therefore, I would speculate, Russell takes a variable to presuppose
the full extent of its range,"'

Goldfarb's statement of the argument is terse, Perhaps, it may be expanded as follows, Recall

that Russell has a compositional account of understanding according to whiuch in order to

understand a complex such as a proposition, one must understand its parts as well as how they

are combined, Recall also that Russell takes it that one cannot understand in a 'direct way' a

term having infinite complexity but, rather, one can only understand such a term by means of

understanding another term having finite complexity that represents the former term in some

way,"'49 In this light, consider a quantified propositional function, say, Xy(x),4•xy in which the

variable x's range is infinite. By the compositional account of understanding, someone j's

'48RRR, p. 37,

"'4 See Principles, §72; here of course Russell appeals to the LT(POM) relation of denoting,
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understanding of Ay(x). xy will depend on her understanding of its quantified variable x, This

understanding in turn will depend on her understanding of the range over which x varies, Note

that since VCPI requires that the range of any variable be restricted, this latter dependence is

non-trivial. Since the range over which x varies has infinite complexity, j's understanding of

this range must come by way of the circumstances that she understands x and that x represents

the range over which it varies. To the extent that x does represent such a range, perhaps x may

be taken to presuppose it, This last step is of course rather quick and would have to be argued

for. I forego any such undertaking here,

Interestingly, Goldfarb's argument may also be expanded into a de-epistomologised

form; By Russell's lights, the identity of the propositional function Xy(x).4xy supervenes on the

identity of the variable x, The identity of x supervenes on the range over which it varies. The

identity of this range supervenes on the identity of the terms that belong to it, Thus, the identity

of Xy(x).4xy supervenes on the identity of the terms belonging to the range of x, To the extent

that supervenience approximates presupposition, Goldfarb's conclusion -- that is, claim 2 --

follows.

Let us prescind from considering the difficulties of Goldfarb's argument and return to

the second problem posed above: to explain how VCP2 may be compatible with Russell's

realistic construal of propositions and propositional functions, As we saw above, VCPI

together with claims 1 and 2 implies VCP2, Thus, insofar as VCPI and claims I and 2 may be

taken as salient features of Russell's particular realistic construal, not only do we see how VCP2

is compatible with it, but we also see that such a construal indeed requires VCP2,

Next, tumrn to the first problem posed above: to the extent that VCPI and VCP2 may be

construed each as indicating a source of the paradoxes, to explain how such a construal may be

compatible with Russell's position that all the paradoxes arise from the same error, At this
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point, it should be clear how the explanation should go. By Russell's lights, the one error in

question is violation ofCVCPI. When we looked at VCPI, we saw how such violation occurs in

the arguments to the set-theoretic and mixed paradoxes. When we looked at VCP2, we saw

how its violation occurs in the arguments to the semantic paradoxes. And just above, we saw

how violation of VCP2 crucially involves violation of VCP 1,

Recall that I said at the beginning of this section that, roughly speaking, because Russell

took there to be some sort of circularity responsible for the paradoxes, he put forward his

vicious-circle principle. However, because Qtune did not see any such circularity, he

concluded that Russell was confised about the matter, In the light of the above discussion, one

should come to a conclusion different from Quine's. That is, one should conclude that, to the

extent that the vicious-circle principle may in essence be identified with VCPI, there is a

circularity to which Russell attended, viz. the circularity involved in non-well-founded

structures.

Before I conclude this chapter, I should offer a brief review. In 1900, Russell put forward a

characterisation of logic, viz,, the logical theory LT(POM) implicit in Principles. In 1901,

however, he derived his class paradox within LT(POM) and other logicians derived several

other paradoxes soon afterward, In the face of these paradoxes, Russell adopted two salient

positions on the nature of their solution. First, the paradoxes arise from some

mischaracterisation of logic and, so, their solution must consist in LT(POM)'s reform.

Secondly, all of the paradoxes arise from the same error and, so, their solution must be unitary.

Thus, the error must be a single mischaracterisation of LT(POM). In 1905-6 Russell took the

mischaracterisation in question to consist in LT(POM)'s construal of the comprehension

axioms. More precisely, he took it to consist in the construal's countenancing all possible



121

formulae as s-formulae when only those that abide by the vicious-circle principle may be so

countenanced.

Much of our attention recently has been focused exclusively on how to interpret this

particular principle. At this point, I should address a question that one may have been

prompted to ask for some time, viz., what justifies Russell's identification of the

mischaracterisation responsible for the paradoxes, To respond, I cite three reasons. First, as

we saw when we looked at VCPI and VCP2, if only those formulae that abide by these

renderings of the vicious-circle principle are colmtenanced as s-formulre, none of the

paradoxes arise, at least by means of their familiar arguments. Secondly, Russell's

identification of the mischaracterisation clearly satisfies his two positions on the nature of the

solution to the paradoxes. Thirdly, the vicious-circle principle, insofar as it may in essence be

taken as VCPI, is intuitively appealing, if not compelling,

To the extent that these reasons justify Russell's particular identification of the

mischaracterisation of logic, he may take logic's correct characterisation as provided by the

result of modifying LT(POM) in order to abide by the vicious-circle principle, In 1908 Russell

adumbrated such a result, LT(PM), in his "Mathematical Logic as Based on the Theory of

Types" and in 1910 he explained it in detail in Principia Mathematica, Although the

modification in question has been described as merely an adjustment of which formulae are to

be countenanced as s-formulae, strictly speaking it of course is much more extensive. As we

saw when we looked at VCPI and VCP2, significant structural changes to LT(POM) must be

effected in order that the result abide by these rende; ngs of the vicious-circle principle. These

changes must be such that logical categories -- that is, types, levels, and orders -- play a far

more serious role in the result than they do in LT(POM).

In the next two chapters, I look at this result, LT(PM), in detail. In Chapter 4, I confine
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my attention to Principia Mathematica's Theory ofDeduction, the propositional fragment of

LT(PM). In Chapter 5, I consider the rest of LT(PM), the Theory ofApparent Variables,

LT(PM)'s quantification theory.
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Chapter 4

The Theory of Deduction

In this chapter and the next I explain the logical theory of Principia Mathematica LT(PM)., o

More specifically, in this chapter I explain the propositional fragment of LT(PM), which

Russell dubs the theory ofdeduction, and in the next chapter I explain the quantificational

fragment of LT(PM), which he dubs the theory ofapparent variables. Russell presents the

propositional fragment of LT(PM) in Principia's Chapters *1 through *5 and its

quantificational fragment in Chapters *9 through *21, For convenience, call the former

fragment LT,(PM) and the latter fragment LTJ/PM).

Recall that in Chapters 2 and 3 I said that LT(PM) may be understood as a result of

modifying the logical theory implicit in Principles, LT(POM), in order to abide by the vicious-

circle principle, As such, LT(PM)'s fragments LTd(PM) and LT,,(PM) may be understood as

theories of types at least in the sense that logical categories play a serious role within them, For

expository purposes, I shall for the most part prescinid from considering LTd(PM)'s type-

theoretic features while explaining LTd(PM) in this chapter. These features are a subset of the

type-theoretic features of LT,,(PM) and I explain these latter features in detail in Chapter 5,

Although my prescinding should cause no confusion, one should remain cognizant that every

term in LTd(PM)'s ontology is of particular logical categories such as types and so are many

elements of LTd(PM)'s vocabulary,

I should remark now that Russell's presentation

'•OGreek letters are used throughout this chapter as metalinguistic variables, In particular,
"9", ""'I, "p3", and "P3'' are generally used to range over variables while "94", "9, "I "", and "'l"'
are generally used to range over formulae,
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in Principia of LTd(PM) at times falls short of contemporary standards of rigour and clarity.

For instance, it does not explicitly distinguish the sundry roles played by its axioms, rules of

nl'erence, and even rules of formation, usually simply calling them all "principles". It also does

not explicitly distinguish semantic considerations from syntactic ones.

In contrast to my explanation of LT(POM) in Chapter 2, my explanation of LTd(PM)

will largely concern its formal elements. However, their semantic analogues will always be

clear.

1. The Ontology of LT,(PM):

Apart from the modifications required in order to abide by the vicious-circle principle, the

ontology of LTA(PM) is very similar to that of the propositional fragment of LT(POM), It

contains propositions, variables ranging over propositions, negation functions, and disjunction

functions, The differences between the two ontologies here in question may be roughly

summarised as follows -- VCPI and VCP2 require most of the differences: (i) every term in

LTd(P )'s ontology is of certain logical categories such as types; (ii) the range of any LTd(PM)

variable is some type; (iii) whereas the material implication function and the property of being

true are primitive logical constants of LT(POM), negation functions and disjunction functions

are the primitive logical constants of LT,(PM); these are like the material implication function

in that they are terms in the ontology in question on a par with all other terms and in that they

are genuine functions; they differ from LT(POM)'s material implication function in that their

scopes of application are types.

Before moving on to the next section, I should remark that Russell actually asserts in

Chapter II of the Introduction to the first edition of Principia that propositions do not exist:

Owing to the plurality of the objects of a single judgment, it follows
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that what we call a "proposition" (in the sense in which this is distinguished
from the phrase expressing it) is not a single entity at all, That is to say, the
phrase which expresses a proposition is what we call an "incomplete" symbol;
it does not have meaning in itself, but requires some supplementation in order
to acquire a complete meaning. This fact is somewhat concealed by the
circumstance that judgment in itself supplies a sufficient supplement, and that
judgment in itself makes no verbal addition to the proposition. Thus "the
proposition 'Socrates is human"' uses "Socrates is htunan" in a way which
requires supplement of some kind before it acquires a complete meaning; but
when I judge "Socrates is human," the meaning is completed by the act of
judging, and we no longer have an incomplete symbol. The fact that
propositions are "incomplete symbols" is important philosophically, and is
relevant at certain points in symbolic logic,'"

This quotation expresses part of Russell's multiple-relation theory q'o " ,n;nt, a theory that he

begins to articulate at the time of Principia's publication. Clearly, insofar as LT(PM) has

quantified variables ranging over propositions,'5 it is difficult to see how Russell can

consistently make the claims quoted above while holding that LT(PM) is a correct

characterisation of logic. Accordingly, I shall charitably discount such claims for the purposes

of this exposition.

2. Vocabular.

As every term in LTd(PM)'s ontology is of certain logical categories, so are many of the

elements of LT4(PM)'s vocabulary, More precisely, if a term i in LT,(PM)'s ontology is of

logical categories t,, ..,., t,, and an element e of LTd(PM)'s vocabulary either refers to or ranges

over i, then e will be of logical categories t,, .,, tn as well.'53

'15 Principia, p, 44,

'"See Chapter *14,

'"Of course, i and c cannot be of t,, .,, t, in the same sense.
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Variables:

For every LTd(PM) type t, LTd(PM) has an infinite alphabet of variables. ) 4 Each of these is to

be thought of as superscripted by some visible index of t. As is well-known, Russell in fact

never visibly superscripted any of the LT(PM) variables presented in Principia. Concerning

these variables, he expected his readers to follow his convention of typical ambiguity,

according to which one is to supply such variables with whatever indices may be required,

Concerning the semantics of LTd(PM)'s variables, if t is an LTA(PM) type, the variables

of type t -e taken to range over propositions of that type

Logical Constants:

LT4(PM) possesses as primitive truth-functional connectives negations signs and disjunction

signs, More precisely, for every type of LTd(PM) formula, LTd(PM) possesses a negation sign

that applies to LTd(PM) formulae of that type -- the type of a formula is explained in Chapter 5,

§6, The case is similar for the disjunction signs. Accordingly, these truth-functional

connectives are typed in the sense that they apply to formulae of only certain types,

Grouping Devices:

LTd(PM) possesses as grouping devices dots, parentheses, and braces,

3. Rules of Formation:

Russell puts forward in Principia propositions * 1." ~r.nd *1.71 in order to specify which

sequences of primitive particles are to count as LTd(PM) formulae:

"4LTd(PM) types will be explained in Chapter 5.

_ __
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*1.7 Ifp is an elementary proposition, -'p is an elementary proposition.
(Pp)'"

*1,71 Ifp and q are elementary propositions, p Vq is an elementary
proposition. (Pp)"6

Although *1.7 and *1.71 are apparently correct parts of an inductive specification, they suffer

three difficulties: they are simply classified as ' primitive propositions' (Pp) and, as such, their

particular role is not made discernible from the roles played by LTd(PM)'s axioms and rules of

inference; they do not distinguish between syntactic and semantic considerations; and they do

not make explicit what the priorities of grouping are that would guarantee the unique

readability of compounds, Concening the second difficulty, it may be thought that Russell is to

be excused since he thinks that the logical constants of negation and disjunction are actually in

the propositions that they help to compose. Accordingly, to that extent he can ambiguously

refer by the same means with impunity to the syntactic sequence of signs used to express a

given proposition p and the proposition p itself However, Russell cannot be so easily excused

because it is doubtful that he would take the syntactic devices -- the dot and the

parenthesis/brace -- that are required for the unique readability of compounds -- or their

semantic analogues, whatever these would be -- to be in the propositions for whose expression

"'Note about Principia's Reference Numbers: In order to facilitate reference to
propositions and definitions -- such reference is required in the annotations of demonstrations --
every proposition and definition in Principia is introduced with a decimal number which is
immediately preceded by an asterisk (The asterisk is needed because Russell uses 'plain'
numerals to label propositions occurring in his deductions). The integral part of a proposition's
(definition's) reference number is also used to indicate the chapter in which such a proposition
(definition) is introduced. Thus, if"*n.d" refers to a given proposition (definition), "*n" will
refer to its chapter. Russell usually, but not always, follows the convention of introducing a
definition at the beginning of its chapter with a reference number whose decimal part is
less than 0.1, So, for instance, he introduces the definition for the subset predicate at the
beginning of Chapter *22 with the reference numeral "*22.01 ,"

"SPrincipia, p. 97.
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they are so required, In that case, he cannot ambiguously refer to propositions and their

expressions with impunity. This point brings us to the third difficulty, Although Russell makes

no mention in *1.7 and *1.71 of any syntactic devices required to guarantee unique readability,

in the execution of Principia he employs Peano's dot notation in concert with parentheses and

braces. A brief description of the dot notation is given in Chapter I of the Introduction to the

first edition of Principia,"' but how it is to be used must be gathered from his practice. "

Bracketing consideration of the circumstance that the logical constants are typed in the

sense described in §2 above, below I present LTd(PM)'s rules of formition, which *1.7 and

* 1,71 attempt to articulate, Unlike * 1.7 and *1.71, however, the rules thus presented are

explicitly concerned with LTd(PM)'s formulae, They also make explicit what the priorities of

grouping are by specifying how the dot and parenthesis/brace notations are to be employed. In

order to make their specification inductively, the rules inductively define a function dn (dot

number) from expressions to natural numbers.

Atomic: Any variable ax is an atomic formula, and dn(c)=- 1;

Negation: If a is a variable, r-,na is a formula and dn( r--a )=0;

If 4 is a formula which is not a variable, r--()1 is a formula and
dn( r-14)i)=0;

Disjunction: If a and p are variables, ra Vp is a formula and dn(ra V pl)=O;

If a is a variable and i is a formula which is not, xcaVA4Q is a formula where

'7P. 9,

'"Although Russell makes no attempt to give inductive rules governing the dot notation, it is
interesting that rather simple ones governing both dot and parenthesis/brace
notations can be stated. These are presented just below.
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A is a configuration of dn(4)+l dots and dn( raVA41)=dn(4)+1; '59

If 4 is a formula which is not a variable and a is a variable, r4AVa a is a
formula where A is a configuration of dn(4)+1 dots and
din( r Av a l)=dn(!)+ l;
If f and * are both formulae which are not variables, '~AVB•l is a formula
where A is a configuration ofdn(4)+1 dots and B is a configuration of
dn(ip)+1 dots and dn( )AVB , )-=max[dn(4),dn( )]+ 1.

Braces may be used in place of parentheses.

This definition might appear overly complicaled. In particular, if one is only interested

in the mechanics of the dot and parenthesis/brace notation, Russell's own description in

Principia's Introduction might seem more appropriate. It is certainly simpler and more

intuitive;

Dots immediately preceded or followed by "V" ... serve to bracket off a
proposition. ... The general principle is that a larger number of dots indicates an
outside bracket, a smaller number indicates an inside bracket. ... The scope of
the bracket indicated by any collection of dots extends backwards or forwards
beyond any smaller number of dots ,.. until we reach either the end of the
asserted proposition or a greater number of dots or an equal number .,. [D]ots
only work away from the adjacent sign of disjunction ... [pp. 9-10]

In a proposition containing several signs of [disjunction], the one with the
greatest number of dots before or after it is the principal one .,. [p, 11]

Although Russell's description is heuristically useful, it is unfortunately incomplete.

Specifically, it does not say how a negation sign relates to the dot and a parenthesis/brace in a

"9The dots are of course configured as follows:

1 dot
2 dots
3 dots
4 dots
5 dots
etc,
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formula.

4. Definitions:

LTd(PM) possesses definitions concerning the material implication, conjunction, and

equivalence signs. Before we look at these, I ought first to review what Russell explicitly says

about definition in general in Principia, '60' 6

In Chapter I of the Introduction to the first edition of Principia, Russell writes:

A definition is a declaration that a certain newly-introduced . ' ol or
combination of symbols is to mean the same as a certain other combination of
symbols of which the meaning is already known. )6,

Evidently, this comment is very similar to a comment about definition that Frege makes in his

Begriffvschrift, where he says that a definition stipulates that its definiendum is "to have the

same content" as its definiens."63

In the next paragraph, Russell makes the following three familiar-sounding remarks

about definition: a definition is concerned with its definiendum and definiens qua formal

objects, not with what they symbolise; a definition is always theoretically unnecessary -- that is,

its definiens may be used in any place where its definiendumn is used and, so, this latter is only a

mere "typographical convenience"; as typographical conveniences, however, the definienda are

extremely useful, since without appeal to them, formulae would become too long to be

readable.

-"Here, we shall see that there is much in common between what Russell and Frege have to
say about the matter,

16'1 shall focus on explicit definition here, Russell later introduces contextual definitions.

'62Principia, p. 11.

'63From Frege to Godel, p. 55,
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These few remarks of Russell's about definition raise the question whether one should

regard each new definition that is put forward in the course of Principia as metatheoretically

specifying an extension of the current language by the addition of the definiendum as a

primitive particle and as likewise specifying a conservative extension of the current theory by

the addition of the definition as an axiom.'" Or, should one regard each new definition that is

put forward in the course of Principia as metatheoretically specifying a new notation, the

definiendum, which is to be considered as an abbreviation for and to be paraphrased away by

an old notation, the definiens, whenever one is concerned with the official language and theory

of LTd(PM), Regarded in this light, a definition does not extend the current language or theory

in any way; it merely indicates how certain symbols are to be provisionally used as short for the

expressions belonging to the official language and theory.

Unfortunately, Russell's above-cited remarks about definition do not answer this

question in any decisive way, Some remarks are compatible with both conceptions of

definition, some only support the former while others only support the latter. His remarks that

each definition makes for shorter formulae and that it is metatheoretic in nature are compatible

with either of the two conceptions of definition. His remark that each definition declares that its

definiendum is to mean the same as its definiens speaks against the latter conception for, on

that conception, the definiendum does not mean anything at all. 6' Later we shall see that one

of LTd(PM)'s implicit yet primitive rules of inference allows the occurrence of any definiendum

'MKunen explains such conservative "I-step" extensions in his Set Theory: An Introduction
to Independence Proofs, Ch. 1, § 13.

'6 By comparison, it is noteworthy that after making the similar-sounding remark about
identical content in Begriffsschrift, Frege says something that clearly supports the former
conception: a definition "is immediately transformed into a [judgement]", That is, it is to be
treated as an axiom after its introduction,



132

within a formula to be substituted by its definiens and vice versa. The admission of such a rule

coheres much better with the former conception of definition tllhan with the latter, since a

system's primitive rules of inference are generally understood to apply to pieces of its official

language and those only, By contrast, what Russell says in Principia about contextual

definition and incomplete symbols would seem on the face of it specifically to support the latter

conception.'" Since nothing very significant depends upon which conception of definition one

ascribes to LTd(PM), I shall treat any LT4(PM) definition according to the former conception.

That is, I shall treat it as specifying a conservative extension of LTd(PM).

Russell's method of stating an explicit definition in Principia is similar to the method

that Frege employs in Begriffsschrift, After the corresponi'ng asterisk numeral, the definition's

definiendum is written, followed by the identity sign "=", followed by its definiens, finally

followed by the symbols "Dr','67 Dots are used between these four items if they are required to

indicate the intended grouping. The general form of a definition is therefore:

*n.m x,x2., .xi,=,Yy2,.Yj D

The definitions concerning the material implication signs are represented in Principia in

typically ambiguous fashion by proposition * .01;

*1.01, p-q.=.-'pVq DfP6

Here, an occurrence of' p' or 'q' is an occurrence of an LT4(PM) variable, not an occurrence of

a compound formula. The definitions concerning the conjunction signs and the equivalence

signs are likewise represented in Principia in typically ambiguous fashion by propositions *3,03

'"See Chapter III of the Introduction to the first edition and Chapter *14,

'6 7The identity sign without the "DP' is used in Principia later on to mean identity.

"'6 Principia, p. 94.
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and *4.01:

*3.01. p,q.=.-(-pV-q) Df69

*4.01. p-q.=.p-q.q--p Df "lu

5. Axioms:

Russell explicitly presents all of LTd(PM)'s axioms in Chapter * 1 Before we look at these, we

ought first to see what Russell says about axioms in general in Principia, In the Introduction to

the first edition of Principia, Russell characterises the axioms of a formal system as those

formulae which must be assumed without proof and remarks that such formulae are needed

since all inference proceeds from some formulae that have been previously 'asserted','" Two

points may immediately be made about this first statement, The first is that its appeal to the

notions of assumption and assertion sounds rather pragmatic, Clearly, however, a purely

syntactic characterisation of axiomhood may be given. The second point is that some inference

-- or, rather, some formalisations of inference -- can proceed from no previous formula at all,

as in, say, some kinds of natural deduction and sequent calculus formal system. None of these

systems requires any particular formulae to be selected as axioms, Of course, Gentzen's

discovery of such systems some twenty years after Principia's publication was a significant

accomplishment in the development of logic, "

In the Introduction Russell further remarks that, like the situation with respect to a

'69Principia, p. I11.

'70Principia, p. 117.

"'7Principia, p. 12.

'"72See Gerhard Gentzen's "Investigations into Logical Deduction" (1935) in The Collected
Papers of Gerhard Gen tzen.
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formal system's primitive particles, it is to some extent optional which formulae should be

selected as the axioms, although the better the axiomatisation the fewer and simpler are the

axioms. He goes on to say something curious, viz,, that the specitic iormulae that he has

selected as LTd(PM)'s axioms are not particularly obvious, Obviousness, of course, is not such

a reliable criterion of truth in these matters, since principles which had been thought to be

unquestionably obvious led to contradiction. But if these axioms are not particularly obvious

and obviousness is not such a reliable guide to truth anyway, and if the axioms cannot be

proved within LTa(PM) in any epistemologically interesting way -- the notion of deduction itself

appeals to them -- the question naturally arises how their acceptance as axioms is to be

justified, Russell answers this question with the following piece of reasoning:

The proof of a logical system is its adequacy and its coherence. That is: (1) the
system must embrace among its deductions all those propositions which we
believe to be true and capable of deduction from logical premisses alone,
though possibly they may require some slight limitation in the form of an
increased stringency of enunciation; and (2) the system must lead to no
contractions ,, 73

Interestingly, Russell uses reasoning of this kind to justify his notorious axioms of

reducibility. "4 The gist of the reasoning is that the axioms of logic in general and of LT,(PM)

in particular are to be justified in much the same way in which high-level principles of natural

science are justified -- that is, by something like the abductive method. Russell first discusses

this method of justifying principles of logic -- which he calls the regressive method -- in 1907'7

and, in important respects, his discussion anticipates Quine's later doctrines of holism and

'73Principia, pp. 12-3,

'74tHowever, Russell does not do so with respect to formulae of Principia that express the
content of the axioms of infinity and choice. As is well known, he never accepts these formulae
as axioms but treats them whenever he is required to do so as mere hypotheses.

'7•See "The Regressive Method of Discovering the Premises of Mathematics"(1907) in EA,
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naturalism.'76

The five formulae that Russell selects as LTd(PM)'s axioms are by now well-known, I

list them as follows along with their names and asterisk numerals.

*1.2 pVp.-,.p Principle of Tautology (Taut.)

* 1,3 q.-.pVq Principle of Addition (Add,)

* 1.4 pVq. -,qVp Principle of Permutation (Perm.)

*1,5 pV(qVr),-,.qV(pVr) Associative Principle (Assoc,)

*.,6 q-r,-.;pVq,.-,pVr Principle of Summation (Sum,)

Only a few remarks need be made about the axioms, First, Russell is not

unmistakeably clear when he states these five expressions about whether they are axioms or

axiom schemata, His later remarks, however, tend to favour construing these expressions as

single axioms, For instance, in Introduction to Mathematical Philosophy (IMP), he notes that

the legitimacy of substitutions of the kind required when * 1.2 to * 1.6 are treated as axioms

must be insured by means of a rule of inference, •" Secondly, Russell does not clearly

distinguish these axioms as fundamentally different with respect to the role that they play within

LTd(PM) from the rules of inference and formation that he puts forward; he simply labels all of

these 'primitive propositions', Thirdly, several reductions of this axiomatisation of

propositional logic have been put forward since Principia's publication, Paul Bemays

proposed the simplest of these reductions which consists of Russell's axioms save the fourth

one, whose non-independence Bernmays discovered: 7 JG.P, Nicod proposed another reduction

'76See, for instance, "Two Dogmas of Empiricism", "On What There Is", Word and Object,
and "Epistemology Naturalized" among others.

'71IMP, p. 151.

"'Mathematische Zeitschrift, vol. 25 (1926), pp. 305-320.
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which consists of replacing Russell's axioms by the following four similar-looking ones;' 79

pVp.-,,p
p.-,.pVq
pV(qVr),--,qV(pVr)
q-r.-':pVq.-,pVr

Likewise, Goetlind and Rasiowa proposed yet another reduction in which Russell's axioms are

replaced by the following three similar-looking ones:•'o

pVp .- p
p-.pVq
q- r.-':pVq.-,rVp

It should be noted for the sake of completeness that much terser axiomatisations of

propositional logic have been put forward which, for instance, make use of only one sentential

connective, one axiom, and two rules of inference.''" 2"' However, not only are these

axiomatisations dissimilar from LTd(PM)'s but their primitive connectives are hard to use and

their axioms and rules of inference are complicated. Accordingly, interest in them consists

principally in the fact that they permit rather simple proofs of metatheorems about them.

5, Rules of Inference:

LTd(PM) possesses three rules of inference, In Chapter *1 Russell states one such rule, modus

ponens (MP). The other two are interchange of definitional equivalents and substitution.

'79Proceedings of the Cambridge Philosophical Society, vol. 19 (1917-20), pp. 32-41.

'8ONorskMatemisk Tidsskrift,vol. 29 (1947), pp. 1-4; ibid., vol. 31 (1949), pp. 1-3,

'81LT4(PM) has 3 primitive rules of inference.

I$ZNicod introduces the following example in the paper cited above,
Connective: Nand;
Axiom: [pl(q r)]j { [tj(tlt)]|[(slq)j((pls)l(pls))}
Rules of inference; substitution, from p and pl(qlr) to r,
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Unfortunately, these are never explicitly stated; that they are rules of LT4(PM) is only made

apparent in the Summary of Chapter *2, where Russell explains the method by which a

deduction is to be carried out, and in the presentation of the deductions themselves," All three

rules of inference are described as follows,

(a) Modus Ponens:

At this point, we have seen all of the explicitly enunciated LTd(PM) primitive propositions save

the one tLt specifies MP -- every one of these o hers has eith~e- ' een a 'c of formation or an

axiom. Ironically, as if it were in some respect more fundamental than these primitive

propositions, Russell puts forward the primitive proposition that specifies MP pages before any

of these others. It is proposition * 1.1;

*1.1 Anything implied by a true elementary proposition is true.'"

That *1.1 is a specification of MP may not be apparent at first blush, This difficulty arises

partly from its having a rather semantical flavour,

Several remarks may be made about *1,1, First, unlike *1,2 through '1.6 (the axioms),

*1,1 is not expressed in the object language of LTd(PM), In this regard, Russell says that

although one might initially think that such expression is possible, it clearly is not, He suggests

that MP may be initially thought to be specified by the following formula of LTd(PM):

p-,;:p-q.-,q. But then he responds:

This is a true proposition, but it holds equally when p is not true and when p
does not imply q, It does not, like the principle we are concerned with, enable

'8"31n IMP, p. 151, Russell acknowledges the failure to introduce explicitly in Principia
LTd(PM)'s rule of substitution,

'"4Principia, p. 94.
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us to assert q simply, without any hypothesis, '"

Here, Russell is alluding in a somewhat obscure way to the important distinction between

axioms and rules of inference, which Lewis Carroll had vividly illustrated.'" Russell goes on to

make the following curious remark:

We cannot express the principle symbolically, partly because any symbolism in
which p is variable only gives the hypothesis that p is true, not the fact that it is
true. '"7

Of course, one can express the rule of inference symbolically; I shall do so shortly, What is

correct is rather that one cannot express it in the object language of LTd(PM). '8 The question

then arises why Russell concludes that MP cannot be specified symbolically. One plausible

consideration has to do with the metalevel/objectlevel distinction. It appears that Russell does

not clearly recognise the metatheoretic character of specifications concerning LTd(PM), Thus,

he does not clearly acknowledge the metatheoretic character either of the specification of

LTd(PM)'s rules of inference or that of its axioms, Both of these, however, talk about LTd(PM)

formulae, not about the subject matter of which such formulae treat. Accordingly, to specify a

rule of inference of LTd(PM) is to specify which formulae may be appended to any given

sequence of formulae that constitutes an LTd(PM) deduction, And to specify the axioms of

LT4(PM) is just to say which LTd(PM) formulae are to be so-called, The fact that one way of

doing so is by displaying such formulae perhaps misleadingly encourages one to think that the

axioms of a formal system may be specified in that system's object language, It is thus

'"Sibid

"• See "What the Tortoise said to Achilles" in Mind, N.S. Voliv, p, 278, 1895.

'"ibid.

~'"I bracket considerations of coding the metalanguage into the object language here,
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plausible to suppose that because Russell does not clearly recognise the metatheoretic character

of such specifications, he does not try to formulate them symbolically in anything but the object

language. And whereas he might appear to succeed with respect to the axioms, he manifestly

does not respect to MP, The result is his conclusion that MP is not symbolically specifiable at

all. I89

Secondly, as noted above, Russell's specification of MP is peculiarly semantical, *1. 1

appeals to propositions, implication, and truth rather than to the respective syntactic

counterparts formulae, the horseshoe, and deduction. What maker " :o especially curious is

that Frege, by contrast, in his Grundgesetze der Arithmeik[ 1 893] -- a work with which Russell

was familiar -- had already specified the rules inference for his formal system in a purely

syntactic way -- something that was considered to be a great advance in the development of

logic, Moreover, Frege distinctly recommended this method of specification in order to obtain

deductions that enjoy the quality of so-called 'gaplessness'. 1" As I mentioned Chapter 1, § 1,

Russell in carrying out the work of Principia also strives for gapless deduction. Thus, in these

respects, his semantical specification of MP is particularly incongruous, The incongnruity may

be partially explained away by the following two plausible but somewhat speculative

I"9 The fact that Russell does not clearly distinguish LTd(PM)'s axioms from its rules of
inference -- calling them all 'primitive propositions' -- also makes it plausible to suppose that
he also mistakenly presumes that since many of the primitive propositions -- viz,, the axioms --
appear to be specifiable in the language of LTd(PM), MP should be also, After all, by his
lights, *1.1 is not noticeably different from these others, MP is not, however, specifiable in the
language of LTd(PM) and Russell in fact acknowledges this situation, as I cited above. As a
result of this insuperability, perhaps Russell simply :•rncludes that the rule cannot be specified
'symbolically' at all. This suggestion is not as odd as it! might at first appear. Russell makes a
similar conclusion with regard to describing the theory of types, something on a par with
specifying a formal system's rule of inference, He acknowledges that, in describing the theory,
he must violate its own type restrictions. Such description, therefore, cannot be grammatically
stated within the theory and, so, cannot be stated 'symbolically' at all.

'•See Foundations ofArithmetic, p, 103; Begrifflschrifl, pp. 5-6,
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considerations, To begin, it is plausible that the semantical flavour of *1, 1 may simply be the

result of Russell's often-noted failure to attend carefully in all cases to the distinction between

s)y nax and semantics, In other words, *1.1 may perhaps best be construed as a poorly worded

expression of what Russell actually means to say by it: a purely syntactic specification of MP:

For any formulae P and p, from 4 and r_, 4qp, infer p,

Next, it is plausible to suppose that Russell thinks that to the extent that MP is clearly

specifiable at all, it should be specifiable in the object language of LTd(PM). As I said in

Chapter 1,§1, he views logic in general as providing an all-encompassing framework within

which anything with sense can be said and within which all reasoning can be carried out and

strictly speaking only within such a framework. Since LTd(PM) is a subpart of logic and since

MP cannot be specified within its object language -- as Russell himself notes -- he has likely

relinquished any effort to specify the rule in a clear, syntactic manner. The result is *1.1.

(b) Interchange of Definitional Equivalents:

This rule is stated as follows:

For any two formulae 4 and 4)' such that with respect to some LTd(PM)
definition 4 is a definiens and 4' a definiendum, if the two formulae 4 and 9'
are such that q contains one or more occurrences of 4) (4') and 9' is like 'p
except for containing 4' (4) at some places where 9 contains ,4 (4'), infer p'
from 'ji,

As I said above, this rule is implicit in Principia. One clear application of it occurs in

the demonstration of *'2.01 (the proposition that p---. -'.-p )•90'

From: -:-p V p. --.-p

To: : p--p-.p

'9'Principia, p. 100,

_
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Another clear application occurs in the demonstration of *3.26 (the proposition that

p.q, "'p ):192

From: -(-pV-1q).-.p

To: F: p,q, -.p

(c) Substitution:

Although LTd(PM)'s rules of substitution are implicit, they are very important, They are stated

as follows:

First Rule of Substitution:

If a and a' are variables of the same type and the formulae 4 and 4' are such
that 4 contains one or more occurrences of a and 4' is like 4 except for
containing an occurrence of a' in every place where 4 contains an occurrence
of a, from C, infer 4'.

A clear application of this rule occurs in the demonstration of *2. 15 (the proposition

that --q.-,- --,-,p ): 9

From; F• -(-tp)

To: i-: q-'N-q)

Second Rule of Substitution:

If the formulae * and *' are such that 4r contains one or more occurrences of
variable a and 10' is like q except for containing formula 4 in every place
where op contains an occurrence of a, then from p, infer '.P94

'"2Principia, p, 112,

'93Principia, p. 102.

194I am here bracketing type-theoretic considerations. A more comprehensive statement of
this rule of inference that does not bracket them is given in Chapter 5 under the rubric Second
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A clear application of this rule also occurs in the demonstration of *2,15;

From: -:.q-r.-:p-q.-,p-r

To: Fp--q)q-, ):-p-,q---(-q):-,:- q-.q( )

[-'p-q/p, p"p- ("l)/q, -q"-n--(p)/r]

Rule of Substitution for Propositional Variables,
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Chapter 5

The Theory of Apparent Variables

In this chapter I explain LT,,(PM) -- that is, the fragment of LT(PM) that Russell calls the

Theory ofApparent Variables,'" Russell presents LT,,(PM) in Chapters *9 through 21 of

Principia, In so doing he offers two formulations of the theory; he offers one in Chapter *9 as

an alternative and he offers the other in Chapters *10 through *21 as the formulation to be

employed throughout the rest of Principia. Accordingly, my explanation of LT,,(PM) will

principally concern the latter formulation and, thus, Chapters *10 through *21. To the extent,

however, that certain features of this formulation are only characterised in Chapter *9, the

explanation will concern this chapter as well.

Recall that in Chapter 4 1 said that LT(PM) may be understood as a result of modifying

the logical theory implicit in Principles, LT(POM), in order to abide by the vicious-circle

principle and that, as such, its subtheories LT4(PM) and LT,,(PM) may be understood as

theories of types. Although I was generally able to prescind from considering LTd(PM)'s type-

theoretic features while explaining LTd(PM) in Chapter 4, to explain LT,,(PM) in this chapter I

must consider its type-theoretic features from the start, '

As is well-known, LT,,(PM) has two notions of logical category -- the notion of type

and the notion of order, Concerning thc former, several have asked which particular notion it

is. On the one hand, in Principia Russell explicitly defines a certain relation -- the relation of

'95Greek letters are used throughout this chapter as metalinguistic variables. In particular,
"a", "a"', "13", and "$3'" are generally used to range over LT,(PM)'s variables while "4", "4"',
"4I", and "4'" are generally used to range over LT,,(PM)'s formulae,

'6Note that these type-theoretic features include those of LTd(PM).
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being of the same type -- which requires a very fine-grained notion of type. On the other hand,

this definition apart, Russell's presentation of LT,,(PM) in Principia is rather inexplicit (he

makes few references to types) and, as a result, LT,,(PM) may be taken as having any of an

entire spectrum of notions of type ranging from the most coarse-grained to the most fine-

grained. In this chapter, for purposes of exposition, I first explain LT,,(PM) as having a rather

coarse-grained notion of type and then, at the end, I explain LT,,(PM) as having a rather fine-

grained notion of type.

LT,,(PM)'s notion of order plays the roles played by the no••ns of order and level

discussed in Chapter 3 -- recall that these two notions were introduced in order to abide by

VCPI and VCP2, As such, LT.,(PM)'s notion of order in a clear sense obstructs the deduction

within LT,,(PM) of the set-theoretic, mixed, and semantic paradoxes and, thus, contributes to

their unitary solution. Although many have thought otherwise, LT,,(PM)'s notion of order is

more coarse-grained than its notion of type in the sense that, in general, every order may be

taken as a superset of several types, Because many have thought otherwise,' 97 LTa,(PM) has

been called a ramified theory oftypes as opposed to a simple theory of types. This appellation,

however, more suitably fits such theories as ramified analysis whose notion of order is more

fine-grained than its notion of type. In any case, as we shall see, LT,,(PM) differs only slightly

from a simple-type-theoretic version of itself, the difference mainly consisting in subtleties in

the rules of substitution.

In understanding LT(PM) -- and, hence, LT8,(PM) -- as a result of modifying IT(POM)

in order to abide by the vicious-circle principle, one should remain cognizant of the fact that it

'97See I. Copi, The Theory of Logical Types, Chap. 3, especially pp, 82-91; S, Kleene,
Introduction to Metamathematics, p. 44; W, and M. Kneale, The Development of Logic, pp.
660ff; and F. Ramsey, "The Foundations of Mathematics", pp. 175-6.
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could be only one among many such results -- recall the discussion in Chapter 3 about VCPI

and VCP2's underdetermining the structure of the logical categories there concerned, One

should note, however, that LT,,(PM) is a particularly attractive one of such results insofar as it

may be taken to provide a unitary solution to the paradoxes, This last characterisation of

course challenges Ramsey and Quine's criticism that, far from being unitary, it is a rather ad

hoc combination of two separable theories, one superimposed upon the other, in which the

superimposing theory -- the theory of orders -- specifically obstructs the deduction of the

semantic paradoxes and the theory superimposed upon -- the theory of types proper --

specifically obstructs the deduction of the set-theoretic paradoxes, My contrary

characterisation will be made good in what follows.

Needless to say, Russell's presentation in Principia of LT,,(PM) is similar to that of

LTd(PM) in that it suffers the same flaws, For instance, it does not distinguish syntactic and

semantic considerations nor does it distinguish the roles played by the axioms, rules of

inference, and rules of formation, As Chapter 4 focused enough upon these flaws, not much

attention will be given them here.

As with LTd(PM), the explanation of LT,,(PM) will largely concern its formal elements,

However, their semantic analogues will always remain apparent.

1. The Ontologyv of LT.,(PM):

Apart from the modifications required in order to abide by the vicious-circle principle, the

ontology of LT,,(PM) is very similar to that of LT(POM), In addition to containing everything

that the ontology of LTd(PM) contains -- that is, propositions, variables ranging over

propositions, negation functions, and disjunction functions -- the ontology of LT,,(PM) contains

Things, concepts, propositional functions, variables ranging over these terms, and universal
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quantifier functions. The differences between the ontologies of LT,(PM) and LT(POM) may

be roughly summarised as follows -- VCPl and VCP2 require most of the differences: (i)

trivially, LT,,(PM) calls its Things individuals and its concepts matrices; (ii) every term in

LT,,(PM)'s ontology is of a particular type and order; (iii) the range of any LT,V(PM) variable is

some type; (iv) for n>O, the scope of application of any LT,,(PM) n-adic propositional function

is in the relevant sense some n types; (v) the scope of application of any LT,v(PM) negation

function is some type; the scope of application of any universal quantifier function is some

type; and the scope of application of any disjunction function is in the r-,levant sense some two

types;'" (vi) LT,,(PM)'s ontology contains no classes. In Chapter *20 of Principia Russell

very cleverly shows how class terms may be introduced as "incomplete symbols" by contextual

definition, As a result, he is able to simulate class theory within LTaV(PM) and, accordingly,

LT,,(PM) has been called a no-class theory of classes,

Before moving on to the next section, I should remark that some have claimed that

there are aspects of Russell's 1905-6 substitutional theory which are apparent in LT,,(PM),'9 9

For instance, certain of such aspects might be taken as apparent in Russell's definition of being

of the same type, However correct their claim may be, it is important to understand that there

is no interesting sense in which the ontology of LT,,(PM) is similar to that of the substitutional

theory, Recall that although the ontology of the substitutional theory contains propositions, it

does not contain propositional functions. In their stead, the theory countenances a primitive

operation of substitution S such that given any terms c and d and a proposition p containing c as

constituent, S(p,d,c) is the proposition that results from substituting d for c in p.

'9 See the Summary of Chapter *9 in Principia.

'"See, for instance, Goldfarb's RRR, pp. 36-8,
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2. Vocabulary:

As every term in LT,,(PM)'s ontology is of a particular type and order, so are many of the

elements of LT,,(PM)'s vocabulary. More precisely, if an term i in LT,,(PM)'s ontology is of a

particular type t and order o and an element e of LT,,(PM)'s vocabulary either refers to or

ranges over i, then e will be of type t and order o as well." Accordingly, I begin this section by

explaining LT.,(PM)'s types and orders, 20' I then consider LT,,(PM)'s variables and logical

constants qua formal objects.

Orders:

LT,,(PM)'s orders are natural numbers including zero.

Types;

LT,,(PM)'s types are ordered pairs ofpretypes and orders. These are defined recursively as

follows:

Base Step:

The empty sequence >o is a pretype, For any order n, the ordered pair of the
empty sequence and n, <'o, n>, is a Lype.

Inductive Step:

If <p0,o1>, <P2,o,>, ..,, <p,oi> are types, i>O, then the sequence s of these types
is a pretype, If m is the least number greater than the orders of o0, o2, ..., oi,
then, for any nam, n is an order appropriate to the pretype s and the ordered
pair of s and n, <s, n>, is a type.

2"Of course, i and e cannot be oft and o in the same sense.

o'Although my characterisation of LT,,(PM)'s coarse-grained types and orders as given
below differs from that given by A. Church, "Comparison of Russell's Resolution of the
Semantical Antimonies with that of Tarski", I am indebted to him for his characterisation.



148

One should note that although the types defined above might appear unfamiliar, considered

without their order components they are very similar to the types characteristic of simple type

theories,

Variables;

For every type t, LT,,(PM) has an infinite alphabet of variables, Each of these is to be thought

of as superscripted by some visible index of t.

Concerning the semantics of LT,,(PM)'s variables, if a type t = <;, 0>, the variables

of type t are taken to range ove: the individuals and, as such, are called individual variables, If

a type t = <<t,,t 2, ,,,,ti>, o> for some types t,, t2, ..., ti and appropriate order o, the variables of

type t are taken to range over propositional functions of that type where the arguments of such

functions are in the relevant sense of types t,, t2, ..,, ti, As such, the variables of type t are called

propositional function variables. If a type t = <<>, n>, n>O, the variables of type t are taken to

range over propositions of that type and, as such, are called propositional variables.

Russell calls those propositional function variables -- as well as the functions over

which such variables range -- whose orders are the least possible appropriate to their pretypes

predicative, Note that this is a third sense of the word. As we shall see, all of LT,,(PM)'s

variables are predicative in the second sense, viz , that of being of logical categories that respect

VCP2,

Logical Constants:

In addition to the primitive truth functional connectives of LT4(PM) -- that is, the negation signs

and disjunction signs -- LT4,(PM) possesses, for every one of its variables c, a universal

quantifier (sign) r(F)1, Like the truth functional connectives, every universal quantifier is typed
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in the sense that it is taken to apply to formulae of only a certain type -- the type of a formula is

explained in §6 below. Although Russell makes this restriction clear in the Summary of

Chapter *9, following his lead I shall largely bracket consideration of it in future discussion,

Grouping Devices;

LT,,(PM) possesses the same grouping devices as LTd(PM) -- that is, dots, parentheses, and

braces -- and employs them in the same way,

3, Rules of Formation:

The rules of formation of LT,,(PM) are a generalisation of those of LTd(PM) and, as such,

countenance the formulae of the latter theory as a proper subset of those of the former,

Bracketing consideration of the circumstance that the logical constants are typed in the sense

described in §2, I present LT,,(PM)'s rules of formation below,20 2' 20 3

Atomic Formulae;

Any propositional variable is an atomic formula, For i>0, if v, is a variable of
type t1, v, a variable of type t2, ..., vi a variable of type ti, and fa propositional
function variable whose pretype is <tI,t,,..,,t,>, then rfvv2,,Vi' is an atomic
formula,

Compound Formulae:

If is a formula, r--)1 is a formula. If [ and p are formulae, r)Vyl is a
formula. If ) is a formula and oa is a variable, then F(a)4) is a formula,

202ZHere, I also bracket consideration of the mechanics of LT,,(PM)'s grouping devices as this
was explained in Chapter 4.

2031n contrast to the case with LTd(PM)'s rules of formation, Russell in Principia puts
forward only one primitive proposition concerning LT,,(PM)'s rules of
formation -- proposition *10.121, The proposition is mentioned below, In any case, there is no
serious doubt about what LT,,(PM)'s rules of formation are,
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Three points are relevant here. First, as is well-known, although Russell never visibly

superscripted any of the LT,,(PM) variables presented in Principia, in certain formulae

containing predicative variables he indicated that such variables are predicative by placing an

exclamation point after some of their occurrences. Secondly, insofar as LT,,(PM)'s rules of

formation do not countenance as formulae both rfu,u2...u and fy,v,..v. where for some i,

1 kisj, u1 and v, are of different types, they require that the types in general be noncumulative in

the sense discussed in Chapter 3, Interestingly, in Principia Russell puts forward only one

primitive proposition that concerns LT,,(PM)'s rules of formation, *10. 121, and what it states is

just this requirement:

* 10,121, If " #x" is significant, then if a is of the same type as x, "ra" is
significant, and vice versa, 204

With regard to *10,121, Russell writes:

It follows from this proposition that two arguments to the same
function must be of the same type; for if x and a are arguments to fx, "fx"'
and " •a" are significant, and therefore x and a are of the same type, 205

Thirdly, LT,,(PM)'s rules of formation guarantee that LT,,(PM) abides by VCP1 in the sense

that, for any i>0, there is no sequence of i formulae respectively having the following forms:

f,(f 2), f2(f,), .,,, f.(fi), and f,(f,), The reason is that LT,,(PM)'s types as defined above realise a

well-founded ordering,

4, Definitions:

In addition to LTd(PM)'s definitions concerning the implication, conjunction, and equivalence

2°4Principia, p, 140,

20sibid,
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signs, LT,(PM) possesses definitions concerning the existential quantifier and identity signs,

The definitions concerning the existential quantifier signs are represented in Principia in

typically ambiguous fashion by proposition *10.01:

*10,01, (3x)4. x.=.-(x).-,#x Df1C"

Here, an occurrence of' 4' is an occurrence of a propositional function variable, not an

occurrence of a well-formed context containing occurrences of the variable 'x',

The definitions concerning the identity signs -- there is one such sign for every type --

are repiesented in Principia in typically ambiguous fashio: . propco...on *13.01:

*13,01. x=y.=;(4)!x.-4,.!y Df07

One should note carefully that although *13.01 qua particular instance resembles the standard

definition of identity given in second-order logic, it differs from such a definition in one

important respect: its '4' does not range over every propositional function that may apply with

sense to x and y. This difference gives rise to the following problem. There appears the

possibility that, although every 0 that applies to x likewise applies to y and, so, x is identical to

y in the sense of *13,01, there exists a non-predicative propositional function *p that applies to x

but not to y and, so, x cannot really be identical to y, As we shall see, LT,v(PM) has a special

group of axioms -- the axioms of reducibility -- that guarantee that such a problematic

possibility cannot obtain.'20

2"6Principia, p. 140,
207Principia, p. 169,

208The problem at issue here may be stated more formally as follows: If identity is defined in
terms of *13.01, then, unless appeal may be made to principles of a rather special sort (such as
the axioms of reducibility), some instances of Leibniz's Law will be beyond derivation.
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5, Axioms:

LT,,(PM) has four kinds of axiom, They are the propositional axioms, the axioms of universal

instantiation, the axioms of confinement of quantifier, and the axioms of reducibility, Russell

explicitly put forward the axioms of universal instantiation and confinement of quantifier in

Chapter *10 and the axioms of reducibility in Chapter *12,

The Propositional Axioms:

LT.,(PMv)'s propositional axioms are precisely those of LTd(PM),

The Axioms of Universal Instantiation:

LT,,(PM)'s axioms of universal instantiation are represented in Principia in typically ambiguous

fashion by proposition * 10, 1:*10. 1, W: (x) . Y- `y'
Here, as in *10.01, '' is a propositional function variable, not a well-formed context,

Accordingly, the standard requirement that 'y' be free for 'x' is satisfied so long as both be of

the type required by ''., As we shall see in the next section, LT,,(PM)'s rules of substitution for

propositional function variables allow the substitution of well-formed contexts for propositional

function variables provided that certain requirements are satisfied, As one might have

expected, one of the requirements is that of a variable's being free for another and, in this

instance, its satisfaction is non-trivial,

2"Principia, p, 140,
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The Axioms of Confinement of Quantifier:

LT,,(PM)'s axioms of confinement of quantifier govem the prenexing behaviour of quantifiers.

They are represented in Principia in typically ambiguous fashion by proposition *10,12:

*I10,12 ,-:.(x),pV x. -,:p.V.(x), xO10

Here, 'p' is a propositional variable, not a formula in general. The analogous remark applies to

' '. Since there is no sense in which a propositional variable may contain a free occurrence of

.another variable, the standard requirement that no free occurrence o.F 'x' occur in 'p' is trivially

satisfied. As we shall see in the next section, LT,,(PM)'s ruler rsubst; 'ion for propositional

variables allow the substitution of formulae in general for propositional variables provided that

certain requirements are satisfied. One of the requirements is analogous to the above one, viz,,

that a substituent formula contain no free occurrences of variables that would be captured upon

substitution, In contrast to the case with the above requirement, the satisfaction of this one is

non-trivial.

The Axioms of Reducibility:

LT,,(PM)'s axioms of reducibility are represented in typically ambiguous fashion by

propositions *12,1 and *12.11:

*12.1, E-:(3f):4x.- -xflx
*12.11,*12.11, P-0:(3f); (x,y), ,, f!(x,y) 211

In *12. 1,' 4' is a monadic propositional function variable and, in * 12.1 1, ' ' is a dyadic

propositional function variable. Although Russell does not explicitly say so, there must be

axioms of reducibility concerning propositional function variables of every arity,

2t0 ibid,

211Principia, p. 167.
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Roughly speaking, these axioms claim that, for every propositional function, there is a

predicative propositional function coextensive to it, The axioms apart, no element of LT,,(PM)

guarantees that its ontology is such as they claim. The import of their claim may be illustrated

by the following two considerations, First, consider a particular axiom of reducibility:

E3fVv ..,vo(fiv,..P n , ý V..v- ) (1)

As we shall see, LT,,(PM)'s rules of substitution allow the substitution of any formula F

containing free occurrences of v,, ..., v, but no free occurrences of f for the atomic formula

'"v,...vQ, To this extent, for any such F, the comprehension formula

33fVv,...v,(flv,...vv " F)1  (2)

may be inferred from (1), In Principia Russell indeed employs comprehension formulae

derived by means of LT,,(PM)'s axioms of reducibility in order to comprehend wanted

propositional functions, •"

The significance of the circumstance just pointed up -- viz.,, that the axioms of

reducibility allow the derivation of comprehension formulae -- might appear mitigated by

consideration of the following furthew, circumstance: For any formula F of the kind in question,

the axioms of universal instantiation and the rules of substitution -- as we shall see -- allow the

derivation of a comprehension formula similar to (2) above:

IBGVv,.,.vn(G!v,,.vn" F)1 (3)

(2) and (3), however, differ in the following important respect, Whereas f is of the least order

appropriate to the orders of its argumnents -- that is, it is predicative -- G need not be, In fact,

depending on the construction of F, G may be of arbitrarily high order. In virtue of this

difference -- as we shall see in the next section -- depending on the construction of F, (2) may

2t2See Principia, p. 180, the demonstrations concerning *14.17 and *14. 171; p, 191, the
demonstration concemrning *20,112.
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be impredicative -- in the modem sense -- while (3) may never be.

Secondly, as I said with respect to LT,,(PM)'s definition of identity in §4, the axioms of

reducibility guarantee that the problematic possibility there envisaged cannot obtain, For

suppose that x is identical to y in the sense of *1 3 ,0 1 . Thus, (4)(4!x -, 4ly). Suppose further

that there is some impredicative propositional function 4 such that 'x, Then, in virtue of an

appropriate axiom of reducibility, there must be some predicative propositional function n

coextensive to * and, so, itx, Since (4)(4!x -" (!y), riy and, so, *y.2 3

In Principia and elsewhere Russell observed that, in contra, the other LT,,(PM)

axioms, the axioms of reducibility do not indisputably present themselves as logical truths,

Notwithstanding, he included them among LT,,(PM)'s axioms in order to make good

LT,,(PM)'s definition of identity and, more importantly, in order to enable LT,,(PM) to simulate

enough class theory to accomplish the reduction of arithmetic. To justify their inclusion,

Russell used his regressive method. In this respect, he wrote:

That the axiom of reducibility is self-evident is a position which can
hardly be maintained. But in fact self-evidence is never more than a part of the
reason for accepting an axiom, and is never indispensable, The reason for
accepting an axiom, as for accepting any other proposition, is always largely
inductive, namely that many propositions which are nearly indubitable can be
deduced from it, and that no equally plausible way is known by which these
propositions could be true if the axiom were false, and nothing which is
probably false can be deduced from it. If the axiom is apparently self-evident,
that only means, practically, that it is nearly indubitable; for things have been
thought to be self-evident and have yet tumed out to be false. And if the axiom
itself is nearly indubitable, that merely adds to the inductive evidence derived
from the fact that its consequences are nearly indubitable: it does not provide
new evidence of a radically different kind. Infallibility is never attainable, and
therefore some element of doubt should al" a)ys attach to every axiom and to all
its consequences, In formal logic, the element of doubt is less than in most
sciences, but it is not absent, as appears from the fact that the paradoxes
followed from premisses which were not previously known to require

"•Formally speaking, if identity is defined in terms of *13.01, the axioms of reducibility
allow the derivation of all instances of Leibniz's Law.



156

limitations, In the case of the axiom of reducibility, the inductive evidence in
its favour is very strong since the reasonings which it permits and the results to
which it leads are all such as appear valid,."

6, Rules of Inference:

LT8,(PM)'s rules of inference consist of modus ponens, interchange of definitional equivalents,

universal generalisation, alphabetic change of bound variables, and substitution. They are

described as follows.

(a) Modus Ponens:

LTV(PM) inherits this rule unchanged from LTd(PM), It is restated by proposition *9,12:

*9,12, What is implied by a true premiss is true,21'

(b) Interchange of Definitional Equivalents:

LT,,(PM) inherits this rule unchanged from LTd(PM), For convenience, it is restated as

follows.

For any two formulae 4) and 4' such that with respect to some LTV(PM)
definition 4 is a defiriens and 4' a definiendum, if the two formulae q and 9'
are such that I contains one or more occurrences of ( ') and 4' is like w
except for containing 4' (4) at some places where i contains 4 (4'), infer 4'
from w,

This rule is implicit in Principia. One clear application of it occurs in the

demonstration of *10.253 (the proposition that- { (x),x)),-,(2x),--'x ):2'

2'4Principia, p. 59,

2 5Principia, p. 132,

216Principia, p. 143.
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From: -: {(y).-Q4y)},-'{()x);

To: -: (y).-"4y. -.((x). x

(c) Universal Generalisation:

LT,,(PM)'s rule of universal generalisation is stated by proposition * 10.11:

*10.11, If 4y is true whatever possible argument y may be, then (x).4x
is true,217

Here, '4y' and ' x' are metavariables respectively ranging over formulae containing one or

more free occurrences of the object variables 'x' and 'y', The rule i ..,,ed more precisely as

follows:

If the formulae 4 and 4' are such that 4 contains free occurrences of a variable
a and 4' is like 4) except for containing a free occurrence of a variable a' of the
same type as the variable a in every place where 4 contains a free occurrence
of a, from 4, infer F(a') '

) .

A clear application of the rule of universal generalisation occurs in the demonstration of

*10.2 (the proposition that (x).pVx, -:p.V.(x).,wx): )8

From: ,-:. p.V.(x),4x:-,.pV4y:,

To: -:. (y):.p.V.(x). x -,pV4y;.

(d) Alphabetic Change of Bound Variables;

LT,,(PM)'s rule of alphabetic change of bound variables is implicit in Principia. It is stated as

follows:

For any two formulae r(Q) 1 and r(a')4) such that the variable a is of the
same type as the variable a' and ,' is like 4 except for containing a free

217Principia, p. 140.
2t3Principia, p. 141,
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occurrence of a' in every place where 4 contains a free occurrence of a, if the
formulae I and +' are such that * contains one or more occurrences of 4 and
qp' is like p except for containing 4' in some places where p contains 4, from
*, infer i',

Needless to say, this rule may be derived as a metatheorem given LT,,(PM)'s axioms and other

rules of inference.

Two clear applications of the rule occur in the demonstration of * 10.22 (the

proposition that (x),. x. x. - :(x),x:(x), ix ):;•9

From: h-,
and , -;,

(x)4rxsx, - :(y). 4y:(z). y(z
(x), 4x:(x). ipx: -"(y). 41y. Iy

(4)
(5)

To: i-:. (x), 4x, 4x. - :(x). 4x:(x), q x

['y' and 'z' in (4) and (5) are replaced by 'x'.J

(e) Substitution:

LT,,(PM)'s rules of substitution are a superset of those of LTd(PM) and, as such, are very

important. Like those of LTd(PM), LT,,(PM)'s rules are implicit in Principia, They are stated

as follows;

Rule of Substitution for Individual Variables:

If oc and a' are individual variables and the formulae 4 and 4' are such that 4
contains one or more free occurrences of a and 4' is like 4 except for
containing a free occurrence of a' in every place where 4 contains a free
occurrence of a, from 4, infer 4',

A clear application of this rule of substitution occurs in the demonstration of * 13,193

(the proposition that )x.,x=y,- ,Qy.x=y ):220

220Principia, p. 171,

21-Ibid,
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From: -: 4x.x=y, -' .y.x=y

To: -: yy=x, -. x.y=x [y/x, x/y]

First Rule of Substitution for Propositional Function Variables:

If ac and ac' are propositional function variables of the same type and the
formulae 4) and V' are such that i) contains one or more free occurrences of cx
and 4' is like 4) except for containing a free occurrence of a' in every place
where 4 contains a free occurrence of a, from 4, infer 4',

A clear application of this rule of substitution occurs in the demonstration of *11.7 (the

proposition that (2x)(3y); (xy), V.4(y,x); - ((3x)(3y), 4(x,y) ):221

From: i-:,(3x)(3y):4(x,y), V, (x,y): :(3x)(3y):4)(x,y):V:(2x)(3y), Q(x,y):

To: -:.(3x)(3y): (x,y).V, (y,x): " ;(3x)(ty):4)(x,y):V :(3x)(3y), 4(y,x):

[XxXy({ (y,x)}/xXhy{ '(x,y)) ]

Another clear application occurs in the demonstration of 4*10,414 (the proposition that

4x-,,xx. x, ~x. -, x,- q x.;.xx,-0x):222

From: h-:4)x-xx. x -,,x. - ' : x-.# x.',x-x Ox

To;: -:,4J@x-r0x-xx. -" :~qx--~"x.,Ox-x

['vit 4/t,, 01x, x6]

Before stating the next rules of substitution, I must define both the type ofa formula with

respect to an argument-variable sequence and the substitution of a formula with respect to an

argument-variable sequence for an atomic formula.223 First, the type of a formula with respect

to an argument-variable sequence: For nŽ0, let 4 be a formula containing free occurrences of

22 1Principia, p, 159,
22Principia, p. 1 48.

223The reader may want to skip over the next few pages as they are rather hirsute,
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n variables. For i such that 0Oin, select i of the n variables in some arbitrary order without

repetition; vi, v, ..., v,.224 Call the variables v,, v2, ..., vi argument variables of 4 and their

sequence an argument-variable sequence of f. Call the other n-i free variables of 4 parameter

variables of 4. Where v, is of type t,, v2 is of type t2, ..., v, is of type t,, call the sequence <t,, tz,

..., t> the pretype of 4 with respect to v,, v2, ..., v) . Where o is the least number greater than

the orders of v,, v., ,,., v,, greater than the orders of the quantified variables of 4, and greater

than or equal to the orders of the parameter variables of 4, call o the order of N with respect to

v,, v,, ..., vi., Finally, call the ordered pair of the pretype of 4) with respect to v,, v, ...,, vi and

the order of 4 with respect to v,, v2, ..., vi the type of 4 with respect to v,, v,, ,., v,, In this

respect, it should be clear that, for any LT,,(PM) formula having an argument-variable

sequence, there is an LT,,(PM) propositional or propositional function variable such that the

variable and the formula with respect to the sequence are of the same pretype, order, and type.

Secondly, the substitution of a formula with respect to an argument-variable sequence

for an atomic formula: Let Ffa,az,...a,' be an atomic formula and let the formula 4 with an

argument-variable sequence v,, v2, ..., v, be such that f and 4 with respect to v,, v2, ..., v, are of

the same pretype, Then, the substitution of 4 with respect to v,, v2, ..., v, for rfaa 2,..a,' is

formed from 0 by putting a, for every free occurrence of v,, a2 for every free occurrence of v2,

..., a, for every free occurrence of v,.

Second Rule of Substitution for Propositional Function Variables:

Let the propositional function variable f and the formula 4 with respect to an
argument-variable sequence v,, v2, ..., v, U of the same type. Let the formulae
4, and 9' be such that s contains one or more free occurrences of f in predicate
position only and p' be like p except for containing, for any variables a,, a2, .,,,
a, of appropriate type, the substitution of 4 with respect to v,, v, ..., v, for

224Note that 0 variables may be selected.
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rfa,a-.,,.a~ in every place where qi contains an occurrence of rfaja,...a,1 whose
occurrence of f is free. If (i) i contains no subformula r(o)1' such that w is a
parameter variable of 4 and P contains a free occurrence of f in predicate
position; and if (ii) for any variables a,, a,, ..., a, for which q contains an
occurrence of rfaja,.,.a 1' whose occurrence of f is free, ,b rontains no
subformula r(a,)P"1 that contains a free occurrence of v,, no subformula
r(a2)r,, that contains a free occurrence of v-, ..., and no subformula r(a,)r,• that
contains a free occurrence of vi; then, from Iq, infer 4'.

A clear application of this rule of substitution occurs in the demonstration of * 13.22

(the proposition that (3z)(aw).z=x.w=y.4(z,w), - ,)(x,y) ):225

From: F-,(B3z)(B3w), z. (z,w), -.(3 z)4z:(•z w), 4(z,w):

o; e'.(3z)(3w).z- .w-~y.(z,w).-:(3z):z=.x:, .,.,)

[Az{z--x}/Xz z(,z),• z w(w-y. (z,w)/X zX w(q(z,w)})

Another clear application occurs in the demonstration of *13.21 (the proposition that

z=x. w=. -,,P4(z, w): -, (x,y)) : -'

From: :;z. (z,w).-,,w(z,w):-.'z.-':i(z,w).-,.x(z,w):

To: •-::z=x, w-•. -, ,,,(z,w): r:. z-x' : w. (z,w):.

[Xz{z-x)/Xz({z}, XzXw(w=y}/XzXw( q(z,w)), XzXw({)(z,w)}!/ zxw(x(z,w)}]

First Rule of Substitution for Propositional Variables:

If a and a' are propositional variables of the same type and the formulae 4 and
4)' are such that 4 contains one or more free occurrences of a and 4' is like 4
except for containing a free occurrence of a' in every place where 4 contains a
free occurrence of a, from 4, infer ,'.

Second Rule of Substitution for Propositional Variables:

Let the propositional variable p and the formula 4 with respect to the empty
argument-variable sequence be of the same type. Let the formulae p and ip' be

225sPrincipia, p. 171.

'226 bid,
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such that ip contains one or more free occurrences of p none of which is in
subject position and rq' be like * except for containing 4 in every place where
4p contains a free occurrence of p, If * contains no subformula Q(w)r• such
that w is a parameter variable of 4 and r contains a free occurrence of p, then
from 9, infer ',

Clear applications of this rule and the previous one occur throughout Chapters *1 to *5

-- as we saw in Chapter 4.

There are several points to note about LT,,(PM)'s rules of substitution. First, given how

complicated some of the rules are, it is curious that none of them received explicit statement in

Principia. In his 1919 Introduction to Mathematical Philosophy, Russell acknowledged that

he ought to have but failed to offer such statement in this work,'227 Russell, however, is not

alone as one who ought to have but failed. Hilbert and Ackermann in their first and second

editions of Grundziige der Theorerische Logik intended to offer explicit statement of the rules

of substitution but did so only inadequately, In their first edition (1928),'28 they offered only a

very rough statement of the second rule of substitution for propositional function variables and,

although they offered a better statement of this rule in their second edition (1938),229 here they

omitted mention of condition (ii) above, Camap also intended to offer explicit statement of the

rules of substitution in his Logical Syntax of Language as did Quine in his A System of

Logistic, although neither fully succeeded."0 ' 23' Indeed, Church and Quine have claimed that

227See Introduction to Mathematical Philosophy, p. 151,

22MSee Grundziige der Theoretische Logik, first edition, p. 54.

229 See Grundziige der Theoretische Logik, second edition, pp. 56-7.

"aoIn his statement of the second rule of substitution for propositional function variables,
Camrnap also omitted mention of condition (ii) above. See Logical Syntax of Language, pp. 90f.

Z"'See Church, Introduction to Mathematical Logic, pp. 288-9,
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an adequate explicit statement was not forthcoming until the publication of Hilbert and Bernay's

Grundlagen der Mathematik, "32

Secondly, as I said in connection with LT,,(PM)'s axioms of reducibility, LT,,(PM)'s

rules of substitution together with its axioms of universal instantiation allow the derivation of

comprehension formulae, To see that this is so, choose any formula , and any argument"

variable sequence v1, v2, ., v, appropriate to f. Let t be the type of 4) with respect to v1, v,, .,,,

v, and let F and G be n-ary propositional function variables of type t. Then, we have:

FvV 2,,,,v, " Fv,v2...,vn  Tautology
BG(Gvv2,,,Vn " Fvv,2..,v) EG: 3

3G(Gv,v,..v,,v r ) Substitution

In this respect, the conjunction of the rules of substitution with the axioms of universal

instantiation carries a serious ontological commitment. Quine has observed that such a

commitment is 'strangely inconspicuous'. 234That it is must in part be owing to the

circumstance that neither the rules without the axioms nor the axioms without the rules carry

the ontological commitment in question. Indeed, the rules without the axioms are ontologically

'harmless' in the sense that their addition to any first-order theory merely brings about a

conservative extension since they can be derived as metatheorems.

Thirdly, recall that the order o of a formula 4) with respect to an argument-variable

sequence v1, v2, ..,, vi is defined as the least number greater than the orders of the variables v1,

v2, .,., vi, greater than the orders of the quantified variables of 4, and greater than or equal to

"32See Church, ibid,; Quine, Methods of Logic, p. 181. Richard Heck claims that Frege
offered an adequate explicit statement in Grundgesetze der Arithmetik.

2331n Principia Russell derives '4y, -, .(3x).4x' (*10,24) by appealing only to tautologies and
an axiom of universal instantiation.

D4See Set Theory ana its Logic, p, 257,
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the orders of the parameter variables of .The reasons for such a definition should be made

apparent. The order o must be greater than the orders of 4's argument variables v,, v2, .,., v in

order to abide by VCP1 -- recall that VCP1 requires that the types realise a well-founded

ordering. The order o must be greater than the orders of f's quantified variables in order to

abide by VCP2. If o were otherwise, comprehension formulae could be derived in the way

described above whose s-formulae contained quantified variables some of whose ranges

contained the terms whose existence such comprehension formulae would affirm. The order o

must be greater than or equal to the orders of 4's parameter variables in order to abide, again,

by VCP2, For suppose that o were just one less than the highest of the orders of the parameter

variables concerned, Then the following comprehension formula (4) could be derived (here,

the superscripts indicate orders):

m(x ) (m(x,y) [(a)(x(a')-y(a'))A *4(n')]} (4)

Since the comprehension formula (5) could be derived apart from the supposition in question:

3,, (j *4)1{ • (j') (13)[,4(13)._ P4(1JJ3)) }  (5),

the comprehension formula (6) could be derived in turn:

m'3(x2)(y) (m3(x2,y 2) - [(a')(x2(al)-y2(a')) A (13)[4'(1')- t (l',n')]]) (6),

Since (6)'s s-formula contains a quantified variable, 13, whose range contains the term whose

existence (6) affirms, (6) violates VCP2.

Fourthly, note that LT,,(PM) differs from a simple-type-theoretic version of itself only

in that its second rule of substitution for propositional function variables and its second rule of

substitution for propositional variables both ultimately make essential appeal to the notion of

the order of a formula with respect to an argument-variable sequence which is defined as

described just above. As we saw, if this notion were modified in any of various ways,

comprehension formulae whose s-formulae violated VCP2 could be derived,
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7, Abstraction:

The description of LT,,(PM) at this point is complete. In this section I describe a certain

conservative extension of it, LT,,(PM), which in Principia Russell partially defines and on

occasion employs,"' This extension differs from LT,,(PM) in point of countenancing

abstraction. f6

(a) Vocabulary:

In addition to the vocabulary of LT,,(PM), LT,,(PM) possesses abstracts as singular terms.

The abstracts may be thought of as partitioned into an w-sequence of classes that are defined

inductively as follows:

Base Step:

The class offirst-level abstracts consists of all the expressions obtained by
carrying out the operations (i) and (ii) below for every LT,,(PM) formula 4 and
argument-variable sequence s appropriate to 4,
(i) If s is empty, prefix with a single lambda operator X and call the
result a propositional abstract; otherwise, if s consists of v1, v2, ., , v., i>0,
prefix 4) with the sequence rX v, X v,., X v,- and call the result a propositional
function abstract,
(ii) Assign the result of (i) the type of 4 with respect to s.

Inductive Step:

The class of (n+ J)st-level abstracts consists of all the expressions obtained by
the way that the first-level abstracts are obtained except for starting with those
formulae that belong to the result of extending LT,,(PM) by adding abstracts of
every level below the (n+ )st level,

"'See Principia, proposition *10.122, p. 140, as well as Chapters *20 and *21, especially p.
200,

236As such, the extension's conservativeness may be shown be methods similar to those
employed to show that NB is a conservative extension of ZF.
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Note that, according to the above description, a formula ý may give rise to two or more

abstracts whose type and orders are different one from the other. Consider, for instance,

rXy '.Fxyl'1 and rf•Fy'.Tx'y'l whose superscripts indicate orders, The former abstract is of

order 2 whereas the latter abstract is of order 3.

(b) Rules of Formation'

The rules of formation of LT,,(PM) are a generalisation of those of LTv(PM);

Atomic Fr, mulae:

Any propositional variable is an atomic formula. For i>O, if e, is an LT',,(PM)
expression of type t,, e, an LT,,(PM) expression of type t,, ..,, e, an LT,,(PM)
expression of type t,, and f an LT.,(PM) expression whose pretype is
<t1,t,..,,t 1>, then rfe e2...el is an atomic formula,

Compound Formulae:

The compound formulae are obtained from the atomic formulae in the same
way in which they are in LT,v(PM).

(c) Rules of Inference:

LT,,(PM)'s rules of substitution are the result of extending LT.,(PM)'s rules of substitution in

the obvious way so as to countenance the substitution of abstracts for variables of like type and

the substitution of LT,,(PM) formulae with respect to argument-variable sequences for

variables of like type. Excluding its rules of substitution, LT,,(PM)'s rules of inference are

those of LT,,(PM).

(d) Axioms:

Every axiom of LT.,(PM) is an axiom of LT.,(PM). In addition, LT,,(PM) possesses axioms
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ofconcretion which fix the logical behaviour of the propositional function abstracts, Each of

these axioms has the following form (where the usual conditions on a 'substituens' being free

for a 'substituendum' obtain);

Xv1,,. vi.4(a1,,,.,a1 ). r l[v,,...,vi/a, ..,ai] (7)

Here,' Xv,.., Xv1.4(al,,..,ai)' represents an atomic formula whose predicate position contains a

propositional f,,:ction abstract having the form 'X v,..., v.vi',

Interestingly, the axioms of concretion function in LT,,(PM), roughly speaking, as

comprehension axioms and do so in at least two ways. First, from any of such axioms having

the form (7), a comprehension formula having the following form may be derived by universal

and existential generalisation:

3f(w,)..(w) (f(w,,.w).n4[v,,.,v/w,,...,wJ) (8)

Secondly, these axioms may actually be employed in derivations in lieu of any comprehension

formulae whatsoever, To illustrate this, I present below two derivations of the statement that

identity defined as XxXy.(j)(4x -, y) is symmetric, The first derivation employs a

comprehension axiom in a representative way and the second derivation is like the first one

except for employing an axiom of concretion in lieu of the first one's comprehension axiom.

Derivation 1: x=y - yx.

(1) (1) x=y Assumption
(1) (2) (4)(4x -. (y) Definition, I
{(1,3)} (3) 4y Assumption
(1,3,4} (4) -4x Assumption
{(1,3,4) (5) 3G(x)(Gx - -"x) Comprehension Axiom
{(1,3,4)} (6) (x)(Gx - -'4x) EI, 5
{ (1,3,4) (7) Gx - -4x UI, 6
{(1,3,4) (8) Gx - Gy UI, 2
{1,3,4) (9) Gx BE, 4, 7
{(1,3,4)} (10) Gy MfP, 8, 9
{(1,3,4) (11) Gy -4y UI, 6
(1,3,4) (12) -4y MP, 10, 11 (no further use of'G')
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(1,3)
(1)
(1)
(1)

RAA, 3, 12
CP, 3, 13
UG, 14
Definition, 15
CP, 1, 16

Derivation 2:

(1)
(1)
{1,3)}
(1,3,4)
(1,3,4)
(1,3,4)
(1,3,4)
(1,3,4)
(1,3,4)
(1,3,4)
{(1,3)}
(1)
{(1)
(1)(}

x=y -, y=x.37

(1) xc=y
(2) (40)(4x - 4)y)
(3) oy
(4) -xP
(5) [fa.-4)a](x) - 4x
(8) [Xa.-'a](x)- [Xa.--al(y)
(9) [Xa.,-a]l(x)
(10) [Xa.4-a](y)
(11) [Xa.-,4a](y) -- y
(12) --@y
(13) 4x
(14) •y -' 4x
(15) (4)(%y -, x)
(16) y=x
(17) x=y - y=x

Assumption
Definition, I
Assumption
Assumption
Axiom of Concretion
UI, 2, [Xa.-ta/,]
BE, 4, 5
MP, 8, 9
Substitution, 5
MP, 10, 11
RAA, 3, 12
CP, 3, 13
UG, 14
Definition, 15
CP, 1, 16

(e) Russell's Abstracts:

Strictly speaking, my formulation of LT,,(PM)'s abstracts differs somewhat from that of

Russell's. According to his formulation, roughly speaking, an abstract is obtained by taking a

formula 4 whose free variables occur in alphabetical order, circumflexing such variables, and

then interchanging them in 4 so that they occur in the order in which they are to be replaced

under the rules of substitution, In this regard, Russell writes in Chapter '21:

For substitution in 4(^Ax,ty) and 4 !(Ay,^x), we adopt the convention
that when a function (as opposed to its val!hs) is represented in a form
involving ^x and ^y, or any other two letters of the alphabet, the value of this
function for the arguments a and b is to be found by substituting a for A^x and b
for Ay, while the value for the arguments b and a is to be found by substituting

237Note that Derivation 2's line numbers correspond to those of Derivation 1.

)(y -0 y x)

X-y -y x

(13)
(14)
(15)
(16)
(17)
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b for Ax and a for ^y, That is, the argument mentioned first is to be substituted
for the letter which comes first in the alphabet, and the argument mentioned
second for the later letter; thus the mode of substitution depends upon the
alphabetical order of the letters which have circumflexes and the
typographical order of the other letters,2"

Immediately afterward, Russell offers the following axioms of concretion to illustrate the

substitution conventions in question:"'

a { !(^x,^y)} b.=, 4!(a,b)
b ({ !(x,Ay)}a,=. 4!(b,a)
a (4!(^y,^x)) } b.=4)!(b,a)
b {4!(Ay,Ax))}a=, !I(a,b)

I nere are of course a few problems with Russell's fi,....alation, irst, it says nothing

about how to obtain abstracts containing free parameter variables. Moreover, any

straightforward extension of the formulation that would say how to do so would likely give rise

to ambiguities of scope, For instance, any such extension would likely represent both:

XxIt '(Xy' x' L'y')]
and:

Xy'[IT 3( x'.x'Ly,')J
by:

g3(\x L'AyI)

Secondly, what it is for a formula 0 to have its free variables occur in alphabetical order must

spelled out in order to speak to the situation in which 4 contains several occurrences of several

frce variables. Thirdly, the very requirement that such a formula O's free variables occur in

alphabetical order appears to conflict with the point that variables in general "serve merely to

indicate cross-references to various positions of quantification" 240 as well as to create undue

'-Principia, p, 200,

239ibid,, *21.02. Curiously, Russell does not regard the axioms of concretion as axioms
proper. Rather, he regards them as definitions concerning propositional function abstracts.

'40Quine, Mathematical Logic, p, 70,
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restriction on the mechanics of derivation.

I should note that none of these problems caused Russell trouble because in Principia

he contextually defined class and relation abstracts which function in the way in which

LT,y(PM)'s abstracts as conceived of by my formulation do. Russell employed the former

abstracts in most ofPrincipia's technical work,

8, Fined-Grained Types:

At the beginning of this chapter I said that, apart from Russell's official definition of being of

the same type, LT,,(PM) may be taken as having any of an entire spectrum of notions of type

ranging from the most coarse-grained to the most fine-grained. So far, I have considered

LT,,(PM) as having a rather coarse-grained notion, In this section I consider it as having a

rather fined-grained notion, one that fits Russell's official definition. For convenience, call the

former logical theory LTJ(PM) and the latter logical theory LT/PM).

(a) Russell's Official Definition of Being ofthe Same Type:

Russell states his definition of the relation A xXy(x is of the samne type as y) in *9,131;

*9,131, Definition of"being ofthe same type," The following is a step-
by-step definition, the definition for higher types presupposing that for lower
types. We say that u and v "are of the same type" if (1) both are individuals, (2)
both are elementary functions taking arguments of the same type, (3) u is
function and v is its negation, (4) u is jtx or qtx, and v is rx V qtx, where

Y'x an ,Ax are elementary functions, (5) u is (y). /(^xy) and v is (z), ,(^x,z),
where (^Ax,^y), b(^x,^y) are of the same type, (6) both are elementary
propositions, (7) u is a proposition and v is -u, or (8) u is (x), qx and v is
0(y). vy, where l^x and qtx a'e of the same type.'

Several considerations are relevant here. First, in contrast to the level at which I have been

speaking, the definition speaks at the object level, As such, the entities to which the relation

24 1Principia, p. 133,
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that it defines applies are not elements of LT,,(PM)'s vocabulary but, rather, terms in

LT,,(PM)'s ontology. In particular, they are LT,,(PM)'s individuals, matrices, propositional

functions, and propositions. Secondly, although it is obvious that the definition is inductive, it

is perhaps less obvious that the induction in question moves over the relation of being an

immediate part of, where x is an immediate part of y if and only if (i) y is the negation of x, (ii)

for some z, y is the disjunction of x and z, or (iii) for some u, y is the universal quantification of

x with respect to u. With regard to LT,,(PM)'s ontology, this relation is well-founded2 42 and, as

such, the induction in question is legitimate. T.ere are two points to note in this connection.

One is that, in light of the fact that this induction does move over such a relation, Russell's

wording in *9.13 l's first sentence is, to a certain extent, misleading, In writing "the definition

for higher types presupposing that for lower types", Russell meant -- contrary to what one

might have expected -- something like 'the definition for terms having a certain degree of

complexity presupposing that for terms having a smaller degree of complexity'. The other point

is that, in virtue of the nature of inductive definitions in general, the base clause of this

definition must suppose that the relation that it defines, .xy(x is of the same type as y), be

already defined for the LT.,(PM) terms that are minimal with respect to the relation that the

induction in question moves over -- that is, the individuals and matrices. Conditions (1) and (2)

of *9,131, which approximate the base clause, make such a supposition clear.

Thirdly, Russell's statement of the definition in *9,131 is incomplete, He omits mention

of the case involving the disjunction of non-elementary terms. One should note that, here, by

242Recall that every LTa,(PM) term is either a simple or a complex ultimately built up from
simples by well-founded compositional operations -- as such, LT,,(PM) respects VCPI, In
particular, LT,,(PM)'s individuals and matrices are simples and its propositional functions and
propositions are complexes ultimately built up from individuals, matrices, and variables by the
well-founded
operations of predication, negation, disjunction, and universal quantification.
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"elementary", Russell means simple, notfirst-order. In this respect, an elementary

propositional function is, roughly speaking, a matrix"' and an elementary proposition is an

atomic proposition as explained in Chapter 2.

In the light of these three considerations, one might spell out Russell's statement of the

definition in order to see which notions of type fit the relation that it defines. Here is a rough

spelling-out: x is of the same type as y if and only if the simples from which x is ultimately

built are of the same type as those from which y is ultimately built and, for any parts x,, x,, ..,,

x; of x that combine in some way to form another part xi,, of x, there are parts y,, Yz..., y, of y

that combine in the same way to form another part y,,, of y and vice versa. More precisely:

Assign the terms of LT,,(PM)'s ontology some reasonable degree of complexity. For any such

term u, let t(u) be the type of u, let P(u) be the class of all the parts of u, and let P,(u) be the

class of all the parts of u having degree of complexity less than i. Then, t(x) = t(y) if and only if

there exists a bijection f from P(x) onto P(y) such that, where the degree of complexity of x is I,

(1) for all i, O0isl, f bijectively maps P,(x) onto P,(y), (2) for all ucPo(x), t(u)= t(f(u)), and (3)

for all j, O0j<l, if VEPj, (x) and v,,,.,, v, combine in some way -- that is, by predication,

negation, disjunction, or universal quantification -- to form v, then f(v1), .,,, f(v,) combine in the

same way to form f(v).

There are two points to note about this spelling-out of Russell's statement *9,131,

First, it makes up for the incompleteness that the statement suffers and does so by requiring of

any two compound terms u and v of the same type that, roughly speaking, the immediate parts

of u be of the same type as those of v and that these parts of u combine in the same way as

z43To the extent that Russell construes a propositional function in general as the result of
taking a proposition and replacing one or more of its parts with one or more variables, an
elementary propositional function is, strictly speaking, the result of taking an atomic proposition
and ,..,



173

those of v, Obviously, there are less stringent ways to make up for the incompleteness,

Secondly, the above spelling-out is somewhat unfaithful to Russell's statement in the sense that

whereas, according to the latter, u and -"u are of the same type as are u and uVv if u and v are,

according to the former, neither u and --u nor u and uVv are of the same type. The above

spelling-out, however, is simpler than one faithful to Russell's statement would be and serves

the expository purposes of this section equally well,

It should be clear that the notion of type defined in §2 is far too coarse-grained to fit the

relation x4xy(x is of the same type as y) as defined by the above spelling-out. It should also be

clear that any of several rather fine-grained notions do fit it, In the next subsection I describe

one such notion and LT,,(PM) as having it -- that is, LT,f(PM).

(b) LTjPM):

LT,Q(PM) will be described in the way in which LT,,V(PM) was described above,

(1) LT..PM)'s Vocabulary:

LT,4PM)'s Orders:

Orders are natural numbers including zero,

LT,4PM)'s Types:

Types are ordered triples of s-formula/mnatrix pretypes, argument pretypes, and orders, These

are defined recursively as follows:

Base Step:

The empty sequence o is an s-formula pretype as well as an argument pretype, The ordered
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triple <<>,c>,0> is a type.

Inductive Step:

Matrix Pretype and Matrix Type

If t, t2, .,., t, are types, i>O, then the sequence M of these types is a matrix pretype, If O is the

least number greater than the orders oft t, t,,,, ti, then the ordered triple <M,M,O> is a matrix

type -- call it the corresponding matrix type of the matrix pretype M,

S-Formula Pretype

Let C, be the function Xx.<O,x>; let C, be the function XxXy,<l,x,y>; and let C3 be the

function XxXy.<2,x,y>, C,, C,, and C3 are required in order to define a notion of type that fits

the above spelling-out of *9.131. Heuristically speaking, given a certain constituent feature of

the type of an LT,v(PM) term u, C, yields the analogous feature of the type of u's negation;

given certain constituent features of the types of terms u and v, C, yields the analogous feature

of the type of their disjunction; and given certain constituent features of the types of terms u

and v, C, yields the analogous feature of the type of the universal quantification (u),v,

An item S is an s-formula pretype if and only if there is a finite sequence a -- call it S's

witnessing sequence -- such that; (1) for any member n of a, (i) n is a matrix type, or (ii) for

some i occurring earlier in a, n = C,(i), or (iii) for some i, j occurring earlier in a, n = C2(ij), or

(iv) for some i occurring earlier in a and for some e that is either a matrix type occurring earlier

in a or a type that is a member of a matrix pretype whose corresponding matrix type occurs

earlier in a, n = C3(e,i) (any such e is said to be bound in S); (2) S is not a matrix type; (3) S is

the last member of a; and (4) o is the smallest possible witnessing sequence of S (there are no

extraneous matrix types occurring in it), Heuristically speaking, an s-formlda pretype

represents some constituent feature of the type of a term u where u is specified by means of an
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s-formula and the feature identifies the s-formula's compositional structure,

Argument Pretype

An item A is an argument pretype for a matrix pretype M if and only if it is a sequence, empty

or non-empty, of any of the members of M in any order without repetition. Call the members

of M not in A parameters ofM with respect to A. An item A is an argument pretype for an s-

formula pretype S if and only if it is a non-repeating sequence, empty or non-empty, such that

for every member n of A, either (1) n is a matrix type occurring in S's witnessing sequence a,

or (2) n is a type which is a member of a matrix pretype whose corresponding matrix type

occurs in a and n is not bound in S, Call the non-members of A that satisfy (1) and (2)

parameters of S with respect to A, An item A is an argument pretype if and only if it is an

argument pretype for some matrix pretype or an argument pretype for some s-formula pretype.

Heuristically speaking, an argument pretype represents some constituent feature of the type of

an LT.,(PM) term u that identifies which of u's free variables -- qua terms in LT,,(PM)'s

ontology -- are argument variables, as opposed to parameter variables, as well as the order in

which they occur.

Order

The order ofa matrix pretype M with respect to an argument pretype A (where A is an

argument pretype for M) is the least number greater than the orders of the members of A and

greater than or equal to the orders of the parameters of M with respect to A. The order of an s-

formula pretype S with respect to an argument pretype A (where A is an argument pretype for

S) is the least number greater than the orders of the members of A, greater than the orders of

the types that are bound in S, and greater than or equal to the orders of the parameters of S with

respect to A, Note that here, in contrast to the situation with the coarse-grained notion of type
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defined in §2 where several orders are appropriate to any particular pretype, only one order is

appropriate to a matrix/s-formula pretype with respect to an argument pretype.

Type

An item T is a type if and only if it is an ordered triple <S, A, 0> such that S is either a matrix

pretype or an s-formula pretype, A is an argument pretype for S, and O is the order of S with

respect to A. As such, a matrix type as defined above is a type. Heuristically speaking, a type,

thus understood, of an LT,,(PM) term u identifies u's compositional structure as well as its

argument-variable sequence,

It should be clear that the notion of type just defined fits the relation Xx.y(x is of the same type

as y) as defined by the above spelling-out of *9.131, One may prove that it does by a

straightforward, if not tedious, induction.

Variables:

For every type t, LTBPM) has an infinite alphabet of variables. Concerning the semantics of

these variables, if a type t = <<>, <>, 0>, the variables of type t are taken to range over the

individuals and, as such, are called individual variables. If t, ,., t9 are types, i>0, M=<t,,...,ti>

is a matrix pretype and, for some appropriate order O, t=<M,M,O> is a matrix type, The

variables of type t are taken to range over atomic (elementary) propositional functions"2 of that

type where the arguments of such functions are in the relevant sense of types t,, .,,, ti, These

variables correspond to the matrices about which Russell writes in Chapter *12 of Principia

and, as such, are called matrix variables, They are also called propositional function

2"See Chapter 2, §2 (aii),
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variables, If A=<t,,..,,tJ>,ui, is a non-empty argument pretype for M, for some appropriate

order O, t=<M,A,O> is a type. The variables of type t are taken to range over propositional

functions of that type where the arguments of such fmnctions are of types t,, ..., t.. As such, the

variables of type t are called propositional function variables, If A=<> is the empty argument

pretype for M, for some appropriate order O, t=<M,<>,O> is a type, The variables of type t

are taken to range over atomic (elementary) propositions and, as such, are called (atomic)

propositional variables, If S is an s-formula pretype and A=<t,,,..,ti> a non-empty argument

pretype for S, for some appropriate order O, t=<S,A,O> is a type. The variables of type t are

taken to range over compound propositional functions of that type where the arguments of such

functions are of types t,, ..., ti, As such, the variables of type t are called (compound)

propositional function variables, If A=<> is the empty argument pretype for S, for some

appropriate order O, t=-<S,<>,O> is a type. The variables of type t are taken to range over

compound propositions of that type and, as such, are called (compound) propositional

variables,

LT.,6PM)'s predicative variables are all and only the matrix variables, These variables

correspond to the predicative functions about which Russell writes in Chapter *12 in

Principia,245

Logical Constants and Grouping Devices:

LT,~ PM) possesses the same logical constants and grouping devices as LTvC(PM).

245Note that others of LT,,(PM)'s variables could have been chosen to play the role of
predicative variable. In particular, for a given argument pretype A, any variables of type
<S,A,O> whose order O is the least possible with respect to A could have been chosen,
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(2) LTJPM)'s Rules of Formation:

LT,4PM)'s rules of formation are similar to those of LT,,,(PM);

Atomic Formulae:

Any propositional variable is an atomic formula. For i>O, if v, is a variable of type t,, v2 a

variable of type t2, ..., vi a variable of type ti, and f a propositional function variable whose

argument pretype is <t,t 2,...,ti>, then rfvj, v... is an atomic formula,

Compound Formulae:

The compound formulae are obtained from the atomic formulae in the same way in which they

are in LTv(PM).

(3) LTS.PM)'s Axioms and Rules of Inference:

Except for the necessary changes, the axioms and the rules of inference of LT,,XPM) are those

of LT,VC(PM),

It is noteworthy that there are natural injective mappings from the class of LT.v (PM)'s types

into the class of LT,(PM)'s types and, correlatively, from the class of LT,,v(PM)'s vocabulary

and formulae into the class of LT,5 (PM)'s vocabulary and formulae, Moreover, if f is such a

mapping, then for any LT,,C(PM) proof P that makes no appeal to LT.vo(PM)'s second rule of

substitution for propositional function variables nor to its second rule of substitution for

propositional variables, there is an LT,5 (PM) proof P' that likewise makes no such appeal such

that P is isomorphic to P' via f By contrast, there are LT,,,(PM) proofs Q that do make appeal
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of the kind in question such that, for any LT,8 PM) proof Q', Q is not isomorphic to Q' via f

This is not to say that, if 'is the LT.,V(PM) formula that Q proves, f( ) is beyond proof in

LT8,XPM),
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