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Principia Mathematica [PM] by A.N. Whitehead and Bertrand Russell,
published 1910–1913 in three volumes by Cambridge University Press,
contains a derivation of large portions of mathematics using notions and
principles of symbolic logic. The notation in that work has been
superseded by the subsequent development of logic during the 20th

century, to the extent that the beginner has trouble reading PM at all. This
article provides an introduction to the symbolism of PM, showing how
that symbolism can be translated into a more contemporary notation which
should be familiar to anyone who has had a first course in symbolic logic.
This translation is offered as an aid to learning the original notation, which
itself is a subject of scholarly dispute, and embodies substantive logical
doctrines so that it cannot simply be replaced by contemporary
symbolism. Learning the notation, then, is a first step to learning the
distinctive logical doctrines of Principia Mathematica.
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1. Why Learn the Symbolism in Principia
Mathematica?

Principia Mathematica [PM] was written jointly by Alfred North
Whitehead and Bertrand Russell over several years, and published in three
volumes, which appeared between 1910 and 1913. It presents a system of
symbolic logic and then turns to the foundations of mathematics to carry
out the logicist project of defining mathematical notions in terms of logical
notions and proving the fundamental axioms of mathematics as theorems
of logic. While hugely important in the development of logic, philosophy
of mathematics and more broadly of “Early Analytic Philosophy”, the
work itself is no longer studied for these topics. As a result the very
notation of the work has become alien to contemporary students of logic,
and that has become a barrier to the study of Principia Mathematica.

This entry is intended to assist the student of PM in reading the symbolic
portion of the work. What follows is a partial translation of the symbolism
into a more contemporary notation, which should be familiar from other
articles in this Encyclopedia, and which is quite standard in contemporary
textbooks of symbolic logic. No complete algorithm is supplied, rather
various suggestions are intended to help the reader learn the symbolism of
PM. Many issues of interpretation would be prejudged by only using
contemporary notation, and many details that are unique to PM depend on
that notation. It will be seen below, with some of the more contentious
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aspects of the notation, that doctrines of substance are built into the
notation of PM. Replacing the notation with a more modern symbolism
would drastically alter the very content of the book.

2. Primitive Symbols

Below the reader will find, in the order in which they are introduced in
PM, the following symbols, which are briefly described. More detail is
provided in what follows:

∗ pronounced “star”; indicates a number, or chapter, as
in ∗1, or ∗20.

· a centered dot (an old British decimal point);
indicates a numbered sentence in the order by first
digit (all the 0s preceding all the 1s etc.), then second
digit, and so on. The first definitions and propositions
of ∗1 illustrate this “lexicographical” ordering: 1·01,
1·1, 1·11, 1·2, 1·3, 1·4, 1·5, 1·6, 1·7, 1·71, 1·72.

the assertion-sign; indicates an assertion, either an
axiom (i.e., a primitive proposition, which are also
annotated “ ”) or a theorem.

the definition sign; follows a definition.

,   ,   ,   , 
etc.

are dots used for delimiting punctuation; in
contemporary logic, we use ( ), [ ], , etc.

, etc. are propositional variables.

, , , , are the familiar sentential connectives, corresponding
to “or”, “if-then”, “not”, “if and only if” and “and”,

⊢

Pp
Df

. : :. ::
{ }

p, q, r

∨ ⊃ ∼ ≡ .
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respectively. [In the Second Edition of PM, 1925–27,
the Sheffer Stroke “ ” is the one primitive connective.
It means “not both … and ___”.]

, etc. are individual variables, which are to be read with
“typical ambiguity”, i.e., with their logical types to be
filled in (see below).

, etc. are individual constants, and stand for individuals (of
the lowest type). These occur only in the Introduction
to PM, and not in the official system.

,
etc.

are atomic predications, in which the objects named
by the variables or constants stand in the relation  or
have the property . These occur only in the
Introduction. “ ” and “ ” occur as constants only in
the Second Edition. The predications ,
etc., are used only in the Second Edition.

, , , etc., 
and , etc.

are variables which range over propositional
functions, no matter whether those functions are
simple or complex.

, , 
, etc.

open atomic formulas in which both “ ” and “ ” are
free. [An alternative interpretation is to view “ ” as
a schematic letter standing for a formula in which the
variable “ ” is free.]

the circumflex; when placed over a variable in an
open formula (as in “ ”) results in a term for a
function. [This matter is controversial. See Landini
1998.] When the circumflected variable precedes a
complex variable, the result indicates a class, as in 

∣

x, y, z

a, b, c

xRy, aRb, R(x)
R

R
a b

R(x), R(x, y)

ϕ ψ χ
f , g

ϕx ψx
ϕ(x, y)

x ϕ
ϕx

x

̂ 
ϕx̂ 
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.

etc.
Terms for propositional functions. Here are examples
of such terms which are constants: “  is happy”, “  is
bald and  is happy”, “ ”, etc. If we apply,
for example, the function “  is bald and  is happy”
to the particular individual , the result is the
proposition “  is bald and  is happy”.

 and ( ) are the quantifiers “there exists” and “for all”
(“every”), respectively. For example, where  is a
simple or complex open formula,

asserts “there exists an  such that 
”

asserts “there exists a propositional
function  such that ”

asserts “every  is such that ”

asserts “every propositional function 
 is such that ”

[These were used by Peano. More recently,  has
been added for symmetry with . Some scholars see
the quantfiers  and ) as substitutional.]

 This is notation that is used to abbreviate universally
quantified variables. In modern notation, these
become  and , respectively.
See the definitions for this notation at the end of

ϕxx̂ 

ϕ , ψ , ϕ( , ),x̂ x̂ x̂ ẑ 
x̂ x̂ 

x̂ 4 < < 6x̂ 
x̂ x̂ 
b

b b

∃
ϕx

(∃x)ϕx x
ϕx

(∃ϕ)ϕx
ϕ ϕx

(x)ϕx x ϕx

(ϕ)ϕx
ϕ ϕx

∀
∃

(ϕ) (∃ϕ

ϕx ψx⊃x
ϕx ψx≡x

∀x(ϕx ⊃ ψx) ∀x(ϕx ≡ ψx)
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Section 3.2 below.

pronounced “shriek”; indicates that a function is
predicative, as in  or . See Section 7.

= the identity symbol; expresses identity, which is a
defined notion in PM, not primitive as in
contemporary logic.

read as “the”; is the inverted iota or description
operator and is used in expressions for definite
descriptions, such as  (which is read: the 
such that ).

[ ] a definite description in brackets; this is a scope
indicator for definite descriptions.

is defined at ∗14·02, in the context , to mean
that the description  is proper, i.e., there is
exactly one .

is defined at ∗24·03, in the context , to mean that
the class  is non-empty, i.e., has a member.

3. The Use of Dots for Punctuation

An immediate obstacle to reading PM is the unfamiliar use of dots for
punctuation, instead of the more common parentheses and brackets. The
system is precise, and can be learned with just a little practice. The use of
dots for punctuation is not unique to PM. Originating with Peano, it was
later used in works by Alonzo Church, W.V.O. Quine, and others, but it
has now largely disappeared. (The use of dots of some historical interest,

!
ϕ!x ϕ! x̂ 

ιι

( x)ϕxιι x
ϕx

( x)ϕxιι
E! E!( x)ϕxι ι

( x)ϕxιι

ϕ

∃! ∃!α
α
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as Alan Turing made a study of the use of dots from a computational point
of view in 1942, presumably in his spare time after a day's work at
Bletchley Park breaking the codes of the Enigma Machine.) The best way
to learn to use it is to look at a few samples which are translated to
formulae using parentheses, and thus to get the feel for it. What follows is
an explanation as presented in PM, pages 9–10, followed by a number of
examples which illustrate each of its clauses:

The use of dots. Dots on the line of the symbols have two uses, one
to bracket off propositions, the other to indicate the logical product
of two propositions. Dots immediately preceded or followed by “

” or “ ” or “ ” or “ ”, or by “ ”, “ ”, “ ” … or “
”, “ ”, “ ” … or “ ” or “ ” or

analogous expressions, serve to bracket off a proposition; dots
occurring otherwise serve to mark a logical product. The general
principle is that a larger number of dots indicates an outside
bracket, a smaller number indicates an inside bracket. The exact
rule as to the scope of the bracket indicated by dots is arrived at by
dividing the occurrences of dots into three groups which we will
name I, II, and III. Group I consists of dots adjoining a sign of
implication  or equivalence  or of disjunction  or of
equality by definition . Group II consists of dots following
brackets indicative of an apparent variable, such as  or  or 

 or  or  or analogous expressions. Group III
consists of dots which stand between propositions in order to
indicate a logical product. Group I is of greater force than Group
II, and Group II than Group III. The scope of the bracket indicated
by any collection of dots extends backwards or forwards beyond
any smaller number of dots, or any equal number from a group of
less force, until we reach either the end of the asserted proposition
or a greater number of dots or an equal number belonging to a
group of equal or superior force. Dots indicating a logical product

∨ ⊃ ≡ ⊢ (x) (x, y) (x, y, z)
(∃x) (∃x, y) (∃x, y, z) [( x)(ϕx)]ι ι [R‘y]

(⊃) (≡) ∨)
(= Df)

(x) (x, y)
(∃x) (∃x, y) [( x)(ϕx)]ι ι

Bernard Linsky
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3.1 Some Basic Examples

Consider the following series of extended examples, in which we examine
propositions in PM and then discuss how to translate them step by step
into modern notation. (Symbols below are sometimes used as names for
themselves, thus avoiding some otherwise needed quotation marks.
Russell is often accused of confusing use and mention, so there may well
be some danger in this practice.)

Example 1

This is the second assertion of “star” 1. It is in fact an axiom or “Primitive
Proposition” as indicated by the ’ ’. That this is an assertion (axiom or
theorem) and not a definition is indicated by the use of “ ”. (By contrast,
a definition would omit the assertion sign but conclude with a “ ” sign.)
Now the first step in the process of translating ∗1·2 into modern notation is
to note the colon. Recall, from the above quoted passage, that “a larger
number of dots indicates an outside bracket, a smaller number indicates an
inside bracket”. Thus, the colon here (which consists of a larger number of
dots than the single dots occurring on the line in ∗1·2) represents an
outside bracket. So, the first step is to translate ∗1·2 to:

have a scope which works both backwards and forwards; other
dots only work away from the adjacent sign of disjunction,
implication, or equivalence, or forward from the adjacent symbol
of one of the other kinds enumerated in Group II. Some examples
will serve to illustrate the use of dots. (PM, 9–10)

⊢ : p ∨ p . ⊃ . p Pp∗1·2

Pp
⊢

Df

⊢ [p ∨ p . ⊃ . p]

The Notation in Principia Mathematica
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So the brackets “[” and “]” represent the colon in ∗1·2. The scope of the
colon thus extends past any smaller number of dots (i.e., one dot) to the
end of the formula. Since formulas are read from left to right the
expression “past” means “to the right of”.

Next, the dots around the “ ” are represented in modern notation by the
parenthesis around the antecedent and consequent. Recall, in the above
passage, we find “… dots only work away from the adjacent sign of
disjunction, implication, or equivalence …”. Thus, the next step in the
translation process is to move to the formula:

Finally, standard modern conventions allow us to delete the outer brackets
and the parentheses around single letters, yielding:

Our next example involves conjunction, which is indicated by simple
juxtaposition of atomic sentences, or with a dot when a substitution
instance might be considered, as in the definition of conjunction in the
following:

Example 2

Here we have a case in which dots occur indicate both a “logical product”
(i.e., conjunction) and delimiting brackets. As a first step in translating
∗3·01 into modern notation, we replace the first dot by an ampersand (and
its corresponding scope delimiters) and replace “ ” by “ ”, to
yield:

⊃

⊢ [(p ∨ p) ⊃ (p)]

⊢ (p ∨ p) ⊃ p

p . q . = . ∼(∼p ∨ ∼q) Df∗3·01

. = . =df

(p & q) [∼(∼p ∨ ∼q)]=df

Bernard Linsky
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The above step clearly illustrates how a “dot indicating a logical product
has a scope which works both backwards and forwards”. Note that the first
dot in ∗3·01, i.e., between the  and , is really optional, given the above
quotation from PM. However, since we may sometimes want to substitute
entire formulas for  and , the dot indicates the extent of the substituted
formulas. Thus, we might have, as a substitution instance:  (in
PM notation) or  (in contemporary symbols).

Finally, our modern conventions allow us to eliminate the outer
parentheses from the definiendum and the brackets “[” and “]” from the
definiens, yielding:

Notice that the scope of the negation sign “ ” in ∗3·01 is not indicated
with dots, even in the PM system, but rather requires parentheses.

Example 3

If we apply the rule “dots only work away from the adjacent sign of
disjunction, implication, or equivalence, or forward from the adjacent
symbol of one of the other kinds enumerated in Group II” (where Group II
includes “ ”), then the modern equivalent would be:

or

3.2 The Force of Connectives

p q

p q
r ∨ s . q ⊃ s

(r ∨ s) & (q ⊃ s)

p & q ∼(∼p ∨ ∼q)=df

∼

∼{(x) . ϕx} . = . (∃x) . ∼ϕx Df∗9·01

(∃x)
∼(x)ϕx (∃x)∼ϕx=df

∼∀xϕx ∃x∼ϕx=df

The Notation in Principia Mathematica
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The ranking of connectives in terms of relative “force”, or scope, is a
standard convention in contemporary logic. If there are no explicit
parentheses to indicate the scope of a connective those which have
precedence in the ranking are presumed to be the principal connective, and
so on for subformulas. Thus, instead formulating the following
DeMorgan’s law as the cumbersome:

we nowadays write it as:

This simpler formulation is natural because  takes precedence over (has
wider “scope” than)  and &, and the latter take precedence over .
Indeed parentheses are often unneeded around , given a further
convention on which  takes precedence over . Thus, the formula 

 becomes unambiguous. We might represent these
conventions by listing the connectives in groups with those with widest
scope at the top:

For Whitehead and Russell, however, the symbols , ,  and 
, in Group I, are of equal force. Group II consists of the

variable binding expressions, quantifiers and scope indicators for definite
descriptions, and Group III consists of conjunctions. Negation is below all
of these. So the ranking in PM would be:

[(∼p) ∨ (∼q)] ≡ [∼(p & q)]

∼p ∨ ∼q ≡ ∼(p & q)
≡

∨ ∼
≡

≡ ⊃
p ⊃ q ≡ ∼p ∨ q

≡
⊃

&, ∨
∼

⊃ ≡ ∨
… = … Df

Bernard Linsky
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This is what Whitehead and Russell seem to mean when they say “Group I
is of greater force than Group II, and Group II than Group III.” Consider
the following:

Example 4

This theorem illustrates how to read multiple uses of the same number of
dots within one formula. Grouping “associates to the left” both for dots
and for a series of disjunctions, following the convention of reading from
left to right and the definition:

So, in ∗3·12, the first two dots around the  simply “work away” from the
connective. The second “extends” until it meets with the next of the same
number (the third single dot). That third dot, and the fourth “work away”
from the second , and the final dot indicates a conjunction with
narrowest scope. The result, formulated with all possible punctuation for
maximum explicitness, is:

If we employ all the standard conventions for dropping parentheses, this
becomes:

⊃, ≡, ∨ and … = … Df
(x), (x, y) … (∃x), (∃x, y) … [( x)ϕx]ι

p . q (conjunction)
∼ ι

⊢ : ∼p . ∨ . ∼q . ∨ . p . q∗3·12

p ∨ q ∨ r . = . (p ∨ q) ∨ r Df∗2·33
∨

∨

{[(∼p) ∨ (∼q)] ∨ (p & q)}

(∼p ∨ ∼q) ∨ (p & q)

The Notation in Principia Mathematica
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This illustrates the passage in the above quotation which says “The scope
of the bracket indicated by any collection of dots extends backwards or
forwards beyond any smaller number of dots, or any equal number from a
group of less force, until we reach either the end of the asserted
proposition or a greater number of dots or an equal number belonging to a
group of equal or superior force.”

Before we look at a wider range of examples, a detailed example
involving quantified variables will prove to be instructive. Whitehead and
Russell follow Peano’s practice of expressing universally quantified
conditionals (such as “All s are s”) with the bound variable subscripted
under the conditional sign. Similarly with universally quantified
biconditionals (“All and only s are s”). That is, the expressions “

” and “ ” are defined as follows:

and correspond to the following more modern formulas, respectively:

As an exercise the reader might be inclined to formulate a rigorous
algorithm for converting PM into a particular contemporary symbolism
(with conventions for dropping parentheses), but the best way to learn the
system is to look over a few more examples of translations, and then
simply begin to read formulae directly.

3.3 More Examples

ϕ ψ

ϕ ψ
ϕx ψx⊃x ϕx ψx≡x

ϕx ψx . = . (x) . ϕx ⊃ ψx Df⊃x∗10·02
ϕx ψx . = . (x) . ϕx ≡ ψx Df≡x∗10·03

∀x(ϕx ⊃ ψx)
∀x(ϕx ≡ ψx)

Bernard Linsky
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In the examples below, each formula number is followed first by Principia
notation and then its modern translation. Notice that in ∗1·5 parentheses
are used for punctuation in addition to dots. (Primitive Propositions ∗1·2,
∗1·3, ∗1·4, ∗1·5, and ∗1·6 together constitute the axioms for propositional
logic in PM. ) Proposition ∗1·5 was shown to be redundant by Paul
Bernays in 1926. It can be derived from appropriate instances of the others
and the rule of modus ponens.

∗1·3  

∗1·4  

∗1·5  

∗1·6  

∗2·03  

∗3·3  

∗4·15  

∗5·71  

∗9·04  

⊢ : q . ⊃ . p ∨ q Pp
q ⊃ p ∨ q

⊢ : p ∨ q . ⊃ . q ∨ p Pp
p ∨ q ⊃ q ∨ p

⊢ : p ∨ (q ∨ r) . ⊃ . q ∨ (p ∨ r) Pp
p ∨ (q ∨ r) ⊃ q ∨ (p ∨ r)
⊢ :. q ⊃ r . ⊃ : p ∨ q . ⊃ . p ∨ r Pp
(q ⊃ r) ⊃ (p ∨ q ⊃ p ∨ r)
⊢ : p ⊃ ∼q . ⊃ . q ⊃ ∼p
(p ⊃ ∼q) ⊃ (q ⊃ ∼p)
⊢ :. p . q . ⊃ . r : ⊃ : p . ⊃ . q ⊃ r
[(p & q) ⊃ r] ⊃ [p ⊃ (q ⊃ r)]
⊢ :. p . q . ⊃ . ∼r : ≡ : q . r . ⊃ . ∼p
p & q ⊃ ∼r ≡ q & r ⊃ ∼p

⊢ :. q ⊃ ∼r . ⊃ : p ∨ q . r . ≡ . p . r
(q ⊃ ∼r) ⊃ [(p ∨ q) & r ≡ p & r]
p . ∨ . (x) . ϕx : = . (x) . ϕx ∨ p Df

The Notation in Principia Mathematica
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∗9·521  
[ ]

∗10·55  

4. Propositional Functions

There are two kinds of functions in PM. Propositional functions such as “
is a natural number” are to be distinguished from the more familiar
mathematical functions, which are called “descriptive functions” (PM,
31). Descriptive functions are defined using relations and definite
descriptions. Examples of descriptive functions are  and “the
successor of ”.

Focusing on propositional functions, Whitehead and Russell distinguish
between expressions with a free variable (such as “  is hurt”) and names
of functions (such as “  is hurt”) (PM, 14–15). The propositions which
result from the formula by assigning allowable values to the free variable
“x” are said to be the “ambiguous values” of the function. Expressions
using the circumflex notation, such as  only occur in the introductory
material in the technical sections of PM and not in the technical sections
themselves (with the exception of the sections on the theory of classes),
prompting some scholars to say that such expressions do not really occur
in the formal system of PM. This issue is distinct from that surrounding
the interpretation of such symbols. Are they “term-forming operators”
which turn an open formula into a name for a function, or simply a
syntactic device, a placeholder, for indicating the variable for which a
substitution can made in an open formula? If they are to be treated as
term-forming operators, the modern notation for  would be “ ”. The

p ∨ ∀xϕx ∀x(ϕx ∨ p)=df

⊢ :: (∃x) . ϕx . ⊃ . q : ⊃ :. (∃x) . ϕx . ∨ . r : ⊃ . q ∨ r
(∃xϕx) ⊃ q] ⊃ [((∃xϕx) ∨ r) ⊃ (q ∨ r)

⊢ :. (∃x) . ϕx . ψx : ϕx ψx : ≡ : (∃x) . ϕx : ϕx ψx⊃x ⊃x
∃x(ϕx & ψx) & ∀x(ϕx ⊃ ψx) ≡ ∃xϕx & ∀x(ϕx ⊃ ψx)

x̂ 

x + y
n

x
x̂ 

ϕx̂ 

ϕx̂ λxϕx

Bernard Linsky
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-notation has the advantage of clearly revealing that the variable  is
bound by the term-forming operator , which takes a predicate  and
yields a term  (which in some logics is a singular term that can occur
in the subject position of a sentence, while in other logics is a complex
predicative expression). Unlike -notation, the PM notation using the
circumflex cannot indicate scope. The function expression “ )” is
ambiguous between “ ” and “ ”, without some further
convention. Indeed, Whitehead and Russell specified this convention for
relations in extension (on p. 200 in the introductory material of ∗21, in
terms of the order of the variables), but the ambiguity it brought out most
clearly by using  notation: the first denotes the relation of being an  and 

 such that  and the second denotes the converse relation of being a 
and  such that .

5. The Missing Notation for Types and Orders

This section explains notation that is not in Principia Mathematica.
Except for some notation for “relative” types in Volume II, there are
famously no symbols for types in Principia Mathematica! Sentences are
generally to be taken as “typically ambiguous” and so standing for
expressions of a whole range of types and so just as there are no individual
or predicate constants, there are no particular functions of any specific
type. So not only does one not see how to symbolize the argument:

All men are mortal 
Socrates is a man 
Therefore, Socrates is mortal

but also there is no indication of the logical type of the function “  is
mortal”. The project of PM is to reduce mathematics to logic, and part of
the view of logic behind this project is that logical truths are all
completely general. The derivation of truths of mathematics from

λ x
λ ϕ

λxϕx

λ
ϕ( ,x̂ ẑ 

λxλyϕxy λyλxϕxy

λ x
y ϕxy y

x ϕxy

x̂ 

The Notation in Principia Mathematica
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definitions and truths of logic will thus not involve any particular
constants other than those introduced by definition from purely logical
notion. As a result no notation is included in PM for describing those
types. Those of us who wish to consider PM as a logic which can be
applied, must supplement it with some indication of types.

Readers should note that the explanation of types outlined below is not
going to correspond with the statements about types in the text of PM.
Alonzo Church [1976] developed a simple, rational reconstruction of the
notation for both the simple and ramified theory of types as implied by the
text of PM. (There are alternative, equivalent notations for the theory of
types.) The full theory can be seen as a development of the simple theory
of types.

5.1 Simple Types

A definition of the simple types can be given as follows:

 (Greek iota) is the type for an individual.
Where  are any types, then  is the type of a
propositional function whose arguments are of types ,
respectively.

( )  is the type of propositions.

Here are some intuitive ways to understand the definition of type. Suppose
that “Socrates” names an individual. (We are here ignoring Russell’s
considered opinion that such ordinary individuals are in fact classes of
classes of sense data, and so of a much higher type.) Then the individual
constant “Socrates” would be of type . A monadic propositional function
which takes individuals as arguments is of type . Suppose that “is
mortal” is a predicate expressing such a function. The function “  is
mortal” will also be of type . A two-place or binary relation between

ι
, … ,τ1 τn ⌜( , … , )⌝τ1 τn

, … ,τ1 τn

⌜ ⌝

ι
(ι)

x̂ 
(ι)

Bernard Linsky
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individuals is of type . Thus, a relation expression like “parent of” and
the function “  is a parent of ” will be of type .

Propositional functions of type  are often called “first order”; hence the
name “first order logic” for the familiar logic where the variables only
range over arguments of first order functions. A monadic function of
arguments of type  are of type  and so functions of such functions are
of type . “Second order logic” will have variables for the arguments
of such functions (as well as variables for individuals). Binary relations
between functions of type  are of type , and so on, for relations of
having more than 2 arguments. Mixed types are defined by the above. A
relation between an individual and a proposition (such as “  believes that 

”) will be of type ,( )).

5.2 Ramified Types

To construct a notation for the full ramified theory of types of PM, another
piece of information must be encoded in the symbols. Church calls the
resulting system one of r-types. The key idea of ramified types is that any
function defined using quantification over functions of some given type
has to be of a higher “order” than those functions. To use Russell’s
example:

 has all the qualities that great generals have

is a function true of persons (i.e., individuals), and from the point of view
of simple type theory, it has the same simple logical type as particular
qualities of individuals (such as bravery and decisiveness). However, in
ramified type theory, the above function will be of a higher order than
those particular qualities of individuals, since unlike those particular
qualities, it involves a quantification over those qualities. So, whereas the
expression “  is brave” denotes a function of r-type , the expression “
 has all the qualities that great generals have” will have r-type . In

(ι, ι)
x̂ ẑ (ι, ι)

(ι)

τ (τ)
((τ))

τ (τ, τ)

x̂ 
P̂ (ι

x̂ 

x̂ (ι)/1
x̂ (ι)/2
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these r-types, the number after the “/” indicates the level of the function.
The order of the functions will be defined and computed given the
following definitions.

Church defines the r-types as follows:

 (Greek iota) is the r-type for an individual.
Where  are any r-types,  is an r-type; this is
the r-type of a -ary propositional function of level , which has
arguments of r-types .

The order of an entity is defined as follows (here we no longer follow
Church, for he defines orders for variables, i.e., expressions, instead of
orders for the things the variables range over):

the order of an individual (of r-type  is 0,
the order of a function of r-type  is , where  is
the greatest of the order of the arguments .

These two definitions are supplemented with a principle which identifies
the levels of particular defined functions, namely, that the level of a
defined function should be one higher than the highest order entity having
a name or variable that appears in the definition of that function.

To see how these definitions and principles can be used to compute the
order of the function “  has all the qualities that great generals have”, note
that the function can be represented as follows, where “ ” are variables
ranging over individuals of r-type  (order 0), “GreatGeneral ” is a
predicate denoting a propositional function of r-type  (and so of order
1), and “ ” is a variable ranging over propositional functions of r-type 

 (and so of order 1) such as great general, bravery, leadership, skill,
foresight, etc.:

ι
, … ,τ1 τm ⌜( , … , )/n⌝τ1 τm

m n
, … ,τ1 τm

ι)
( , … , )/nτ1 τm n + N N

, … ,τ1 τm

x̂ 
x, y

ι (y)
(ι)/1

ϕ
(ι)/1
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We first note that given the above principle, the r-type of this function is 
; the level is 2 because the level of the r-type of this function has to be

one higher than the highest order of any entity named (or in the range of a
variable used) in the definition. In this case, the denotation of
GreatGeneral, and the range of the variable “ ”, is of order 1, and no other
expression names or ranges over an entity of higher order. Thus, the level
of the function named above is defined to be 2. Finally, we compute the
order of the function denoted above as it was defined: the sum of the level
plus the greatest of the orders of the arguments of the above function.
Since the only arguments in the above function are individuals (of order
0), the order of our function is just 2.

Quantifying over functions of r-type  of order  in a definition of a
new function yields a function of r-type , and so a function of
order one higher, . Two kinds of functions, then, can be of the second
order: (1) functions of first-order functions of individuals, of r-type 

, and (2) functions of r-type , such as our example “  has all
the qualities that great generals have”. This latter will be a function true of
individuals such as Napoleon, but of a higher order than simple functions
such as “  is brave”, which are of r-type .

Logicians today use a different notion of “order”. Today, first-order logic
is a logic with only variables for individuals. Second order logic is a logic
with variables for both individuals and properties of individuals. Third-
order logic is a logic with variables for individuals, properties of
individuals, and properties of properties of individuals. And so forth. By
contrast, Church would call these logics, respectively, the logic of
functions of the types  and , the logic of functions of the
types  and , and the logic of
functions of the types  etc. (i.e., the level-one functions of the

(ϕ){[(y)(GreatGeneral(y) ⊃ ϕ(y)] ⊃ ϕ }x̂ 

(ι)/2

ϕ

(τ)/n k
(τ)/n + 1

k + 1

((ι)/1)/1 (ι)/2 x̂ 

x̂ (ι)/1

(ι)/1 (ι, … , ι)/1
((ι)/1)/1 ((ι, … , ι)/1, … , (ι, … , ι)/1)/1

(((ι)/1)/1)/1
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functions of the preceding type). Given Church’s definitions, these are
logics of first-, second- and third-order functions, respectively, thus
coinciding with the modern terminology of “ th-order logic”.

6. Variables

As mentioned previously, there are no individual or predicate constants in
the formal system of PM, only variables. The Introduction, however,
makes use of the example “  standing in the relation  to ” in a
discussion of atomic facts (PM, 43). Although “ ” is later used as a
variable that ranges over relations in extension, and “ ” are
individual variables, let us temporarily add them to the system as predicate
and individual constants, respectively, in order to discuss the use of
variables in PM.

PM makes special use of the distinction between “real”, or free, variables
and “apparent”, or bound, variables. Since “ ” is a variable, “ ” will be
an atomic formula in our extended language, with “ ” and “ ” real
variables. When such formulae are combined with the propositional
connectives , , etc., the result is a matrix. For example, “

” would be a matrix.

As we saw earlier, there are also variables which range over functions: “ ,
, ”, etc. The expression “ ” thus contains two variables and

stands for a proposition, in particular, the result of applying the function 
to the individual .

Theorems are stated with real variables, which gives them a special
significance with regard to the theory. For example,

n

a R b
R

a, b, c, …

x xRy
x y

∼ ∨
aRx . ∨ . xRy

ϕ
ψ … , f , g ϕx

ϕ
x

⊢ : (x) . ϕx . ⊃ . ϕy Pp∗10·1
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is a fundamental axiom of the quantificational theory of PM. In this
Primitive Proposition the variables “ ” and “ ” are real (free), and the “ ”
is apparent (bound). As there are no constants in the system, this is the
closest that PM comes to a rule of universal instantiation.

Whitehead and Russell interpret “ ” as “the proposition which
asserts all the values for ” (PM 41). The use of the word “all” has
special significance within the theory of types. They present the “vicious
circle principle”, which underlies the theory of types, as asserting that

Specifically, then, a quantified expression, since it talks about “all” the
members of a totality, must range over a specific logical type in order to
observe the vicious circle principle. Thus, when interpreting a bound
variable, we must assume that it ranges over a specific type of entity, and
so types must be assigned to the other entities represented by expressions
in the formula, in observance with the theory of types.

A question arises, however, once one realizes that the statements of
primitive propositions and theorems in PM such as ∗10·1 are taken to be
“typically ambiguous” (i.e., ambiguous with respect to type). These
statements are actually schematic and represent all the possible specific
assertions which can be derived from them by interpreting types
appropriately. But if statements like ∗10·1 are schemata and yet have
bound variables, how do we assign types to the entities over which the
bound variables range? The answer is to first decide which type of thing
the free variables in the statement range over. For example, assuming that

ϕ y x

(x) . ϕx
ϕx̂ 

… generally, given any set of objects such that, if we suppose the
set to have a total, it will contain members which presuppose this
total, then such as set cannot have a total. By saying that the set has
“no total”, we mean, primarily, that no significant statement can be
made about “all its members”. (PM, 37)
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the variable  in ∗10·1 ranges over individuals (of type , then the
variable  must range over functions of type , for some . Then the
bound variable  will also range over individuals. If, however, we assume
that the variable  in ∗10·1 ranges over functions of type , then the
variable  must range over functions of type , for some . In this
case, the bound variable  will range over functions of type .

So  and  are called “real” variables in ∗10·1 not only because they are
free but also because they can range over any type. Whitehead and Russell
frequently say that real variables are taken to ambiguously denote “any” of
their instances, while bound variables (which also ambiguously denote)
range over “all” of their instances (within a legitimate totality, i.e. type).

7. Predicative Functions and Identity

The exclamation mark “!” following a variable for a function and
preceding the argument, as in “ ”, “ ”, “ ”, indicates that the
function is predicative, that is, of the lowest order which can apply to its
arguments. In Church’s notation, this means that predicative functions are
all of the first level, with types of the form . As a result, predicative
functions will be of order one more than the highest order of any of their
arguments. This analysis is based on quotations like the following, in the
Introduction to PM:

Unfortunately in the summary of ∗12, we find “A predicative function is
one which contains no apparent variables, i.e., is a matrix” [PM, 167].
Reconciling this statement with that definition in the Introduction is a
problem for scholars.

y ι)
ϕ (ι)/n n

x
y (ι)/1

ϕ ((ι)/1)/m m
x (ι)/1

y ϕ

f ! x̂ ϕ!x ϕ! x̂ 

(…)/1

We will define a function of one variable as predicative when it is
of the next order above that of its argument, i.e., of the lowest
order compatible with its having that argument. (PM, 53)
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To see the shriek notation in action, consider the following definition of
identity:

That is,  is identical with  if and only if  has every predicative function 
 which is possessed by . (Of course the second occurrence of “=”

indicates a definition, and does not independently have meaning. It is the
first occurrence, relating individuals  and , which is defined.)

To see how this definition reduces to the more familiar definition of
identity (on which objects are identical iff they share the same properties),
we need the Axiom of Reducibility. The Axiom of Reducibility states that
for any function there is an equivalent function (i.e., one true of all the
same arguments) which is predicative:

Axiom of Reducibility:

To see how this axiom implies the more familiar definition of identity, note
that the more familiar definition of identity is:

for  of “any” type. (Note that this differs from ∗13·01 in that the shriek
no longer appears.) Now to prove this, assume both ∗13·01 and the Axiom
of Reducibility, and suppose, for proof by reductio, that , and ,
and not , for some function  of arbitrary type. Then, the Axiom of
Reducibility ∗12·1 guarantees that there will be a predicative function ,
which is coextensive with  such that  but not , which contradicts
∗13·01.

8. Definite Descriptions

x = y . = : (ϕ) : ϕ!x . ⊃ . ϕ!y Df∗13·01
x y y

ϕ x

x y

⊢ : (∃f ) : ϕx . . f !x Pp≡x∗12·1

x = y . = : (ϕ) : ϕx . ⊃ . ϕy Df
ϕ

x = y ϕx
ϕy ϕ

ψ !
ϕ ψ !x ψ !y
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The inverted Greek letter iota “ ” is used in PM, always followed by a
variable, to begin a definite description.  is read as “the  such that 
is ”, or more simply, as “the ”. Such expressions may occur in subject
position, as in , read as “the  is ”. The formal part of Russell’s
famous “theory of definite descriptions” consists of a definition of all
formulas “… …” in which a description occurs. To distinguish the
portion  from the rest of a larger sentence (indicated by the ellipses
above) in which the expression  occurs, the scope of the
description is indicated by repeating the definite description within
brackets:

The notion of scope is meant to explain a distinction which Russell
famously discusses in “On Denoting” (1905). Russell says that the
sentence “The present King of France is not bald” is ambiguous between
two readings: (1) the reading where it says of the present King of France
that he is not bald, and (2) the reading on which denies that the present
King of France is bald. The former reading requires that there be a unique
King of France on the list of things that are not bald, whereas the latter
simply says that there is not a unique King of France that appears on the
list of bald things. Russell says the latter, but not the former, can be true in
a circumstance in which there is no King of France. Russell analyzes this
difference as a matter of the scope of the definite description, though as we
shall see, some modern logicians tend to think of this situation as a matter
of the scope of the negation sign. Thus, Russell introduces a method for
indicating the scope of the definite description.

To see how Russell’s method of scope works for this case, we must
understand the definition which introduces definite descriptions (i.e., the
inverted iota operator). Whitehead and Russell define:

ιι

( x)ϕxιι x x
ϕ ϕ

ψ( x)ϕxι ι ϕ ψ

ψ( x)ϕxι ι

ψ
ψ( x)ϕxι ι

[( x)ϕx] . ψ( x)ϕxι ιι ι
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This kind of definition is called a contextual definition, which are to be
contrasted with explicit definitions. An explicit definition of the definition
description would have to look something like the following:

which would allow the definite description to be replaced in any context
by whichever defining expression fills in the ellipsis. By contrast, ∗14·01
shows how a sentence, in which there is occurrence of a description 

 in a context , can be replaced by some other sentence (involving
 and ) which is equivalent. To develop an instance of this definition,

start with the following example:

Example. 
The present King of France is bald.

Using  to represent the propositional function of being a present
King of France and  to represent the propositional function of being bald,
Whitehead and Russell would represent the above claim as:

which by ∗14·01 means:

In words, there is one and only one  which is a present King of France
and which is bald. In modern symbols, using  non-standardly, as a
variable, this becomes:

[( x)ϕx] . ψ( x)ϕx . = : (∃b) : ϕx . . x = b : ψb Dfι ι ≡x∗14·01

ι ι

( x)(ϕx) = : … Dfιι

( x)(ϕx)ιι ψ
ϕ ψ

PKFx
B

[( x)(PKFx)] . B( x)(PKFx)ι ιι ι

(∃b) : PKFx . . x = b : Bb≡x

b
b

(∃b)[∀x(PKFx ≡ x = b) & Bb]
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Now we return to the example which shows how the scope of the
description makes a difference:

Example. 
The present King of France is not bald.

There are two options for representing this sentence.

and

In the first, the description has “wide” scope, and in the second, the
description has “narrow” scope. Russell says that the description has
“primary occurrence” in the former, and “secondary occurrence” in the
latter. Given the definition ∗14·01, the two PM formulas immediately
above become expanded into primitive notation as:

In modern notation these become:

The former says that there is one and only one object which is a present
King of France and which is not bald; i.e., there is exactly one present
King of France and he is not bald. This reading is false, given that there is
no present King of France. The latter says it is not the case that there is
exactly one present King of France which is bald. This reading is true.

[( x)(Kx)] . ∼B( x)(Kx)ι ιι ι

∼[( x)(Kx)] . B( x)(Kx)ι ιι ι

(∃b) : PKFx x = b : ∼Bb≡x
∼(∃b) : PKFx x = b : Bb≡x

∃x[∀y(PKFy ≡ y = x) & ∼Bx]
∼∃x[∀y(PKFy ≡ y = x) & Bx]
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Although Whitehead and Russell take the descriptions in these examples
to be the expressions which have scope, the above readings in both
expanded PM notation and in modern notation suggest why some modern
logicians take the difference in readings here to be a matter of the scope of
the negation sign.

9. Classes

The circumflex “ˆ” over a variable preceding a formula is used to indicate
a class, thus  is the class of things  which are such that . In modern
notation we represent this class as , which is read: the class of 
which are such that  has . Recall that “ ”, with the circumflex over a
variable after the predicate variable, expresses the propositional function
of being an  such that . In the type theory of PM, the class  has the
same logical type as the function . This makes it appropriate to use the
following contextual definition, which allows one to eliminate the class
term  from occurrences in the context :

or in modern notation:

where  is a predicative function of 

Note that  has to be interpreted as a higher-order function which is
predicated of the function . In the modern notation used above, the
language has to be a typed language in which  expressions are allowed in
argument position. As was pointed out later (Chwistek 1924, Gödel 1944,
and Carnap 1947) there should be scope indicators for class expressions
just as there are for definite descriptions. Chwistek, for example, proposed
copying the notation for definite descriptions, thus replacing ∗20·01 with:

ψxx̂ x ψx
{x ∣ ψx} x

x ψ ϕx̂ 

x ϕx ϕxx̂ 
ϕx̂ 

ψxx̂ f

f { (ψz)} . = : (∃ϕ) : ϕ!x . . ψx : f {ϕ! } Dfẑ ≡x ẑ ∗20·01

f {z ∣ ψz} ∃ϕ[∀x(ϕx ≡ ψx) & f (λxϕx)]=df

ϕ x

f
ϕ! ẑ 

λ
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Contemporary formalizations of set theory make use of something like
these contextual definitions, when they require an “existence” theorem of
the form , in order to justify the introduction of a
singular term . (Given the law of extensionality, it follows
from  that there is a unique such set.) The relation
of membership in classes  is defined in PM by first defining a similar
relationship between objects and propositional functions:

or, in modern notation:

∗20·01 and ∗20·02 together are then used to define the more familiar
notion of membership in a class. The formal expression “ ”
can now been seen as a context in which the class term occurs; it is then
eliminated by the contextual definition ∗20·01. (Exercise)

PM also has Greek letters for classes: , etc. These will appear as
bound (real) variables, apparent (free) variables and in abstracts for
propositional functions true of classes, as in . Only definitions of the
bound Greek variables appear in the body of the text, the others are
informally defined in the Introduction:

or, in modern notation,

where  is a predicative function.

[ (ψz)] . f { (ψz)} . = : (∃ϕ) : ϕ!x . . ψx : f {ϕ! }ẑ ẑ ≡x ẑ 

∃x∀y(y ∈ x ≡ … y …)
{y ∣ … y …}

∃x∀y(y ∈ x ≡ … y …)
∈

x ∈ (ϕ! ) . = . ϕ!x Dfẑ ∗20·02

x ∈ λzϕz ϕx=df

y ∈ { (ϕz)}ẑ 

α, β, γ

ϕα̂ 

(α) . f α . = . (ϕ) . f { (ϕ!z)} Dfẑ ∗20·07

∀α f α ∀ϕf {z ∣ ϕz}=df

ϕ
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Thus universally quantified class variables are defined in terms of
quantifiers ranging over predicative functions. Likewise for existential
quantification:

or, in modern notation,

where  is a predicative function.

Expressions with a Greek variable to the left of  are defined:

These definitions do not cover all possible occurrences of Greek variables.
In the Introduction to PM, further definitions of are  and  proposed,
but it is remarked that the definitions are in some way peculiar and they do
not appear in the body of the work. The definition considered for  is:

or, in modern notation,

That is,  is an expression naming the function which takes a function 
to a proposition which asserts  of the class of s. (The modern notation
shows that in the proposed definition of  in PM notation, we shouldn’t
expect  in the definiens, since it is really a bound variable in ;
similarly, we shouldn’t expect  in the definiendum because it is a bound
variable in the definiens.) One might also expect definitions like ∗20·07
and ∗20·071 to hold for cases in which the Roman letter “ ” is replaced by

(∃α) . f α . = . (∃ϕ) . f { (ϕ!z)} Dfẑ ∗20·071

∃α f α ∃ϕf {z ∣ ϕz}=df

ϕ

∈
α ∈ ψ ! . = . ψ !α Dfα̂ ∗20·081

f α f α̂ 

f α̂ 
f . = . (∃ψ) . !x ψ !x . f {ψ ! }α̂ ϕ̂ ≡x ẑ 

λα f α λϕf {x ∣ ϕx}=df

f α̂ ϕ
f ϕ

f α̂ 
α f α̂ 

ϕ

z
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a Greek letter. The definitions in PM are thus not complete, but it is
possible to guess at how they would be extended to cover all occurrences
of Greek letters. This would complete the project of the “no-classes”
theory of classes by showing how all talk of classes can be reduced to the
theory of propositional functions.

10. Prolegomena to Cardinal Arithmetic

Although students of philosophy usually read no further than ∗20 in PM,
this is in fact the point where the “construction” of mathematics really
begins. ∗21 presents the “General Theory of Relations” (the theory of
relations in extension; in contemporary logic these are treated as sets of
ordered pairs, following Wiener).  is the relation between  and 
which obtains when  is true. In modern notation we represent this as
as the set of ordered pairs , which is read: the set of
ordered pairs  which are such that  bears the relation  to .

The following contextual definition (∗21·01) allows one to eliminate the
relation term  from occurrences in the context :

or in modern notation:

where  is a predicative function of  and .

Principia does not analyze relations (or mathematical functions) in terms
of sets of ordered pairs, but rather takes the notion of propositional
function as primitive and defines relations and functions in terms of them.
The upper case letters  and , etc., are used after ∗21 to stand for these
“relations in extension”, and are distinguished from propositional

ψ(x, y)x̂ ŷ x y
ψ(x, y)

{⟨x, y⟩ ∣ ψ(x, y)}
⟨x, y⟩ x ψ y

ψ(x, y)x̂ ŷ f

f { ψ(x, y)} . = :. (∃ϕ) : ϕ!(x, y) . . ψ(x, x) : f {ϕ!( , )} Dfx̂ ŷ ≡x,y û v̂ 

f {⟨x, y⟩ ∣ ψ(x, y)} ∃ϕ[∀xy(ϕ(x, y) ≡ ψ(x, y)) & f (λuλvϕ(u, v))]=df

ϕ u v

R, S T
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functions by being written between the arguments. Thus it is  with
arguments after the propositional function symbol, but . From ∗21
functions “  and ”, etc., disappear and only relations in extension, , 
and , etc., appear in the pages of Principia . While propositional
functions might be true of the same objects yet not be identical, no two
relations in extension are true of the same objects. The logic of Principia
is thus “extensional”, from page 200 in volume I, through to the end in
Volume III.

∗22 on the “Calculus of Classes” presents the elementary set theory of
intersections, unions and the empty set which is often all the set theory
used in elementary mathematics of other sorts. The student looking for the
set theory of Principia to compare it with, say the Zermelo-Fraenkel
system, will have to look at various numbers later in the text. The Axiom
of Choice is defined at ∗88 as the “Multiplicative Axiom” and a version of
the Axiom of Infinity appears at ∗120 in Volume II as “Infin ax”. The set
theory of Principia comes closest to Zermelo’s axioms of 1908 among the
various familiar axiom systems, which means that it lacks the Axiom of
Foundation and Axiom of Replacement of the now standard Zermelo-
Fraenkel axioms of set theory. The system of Principia differs importantly
from Zermelo’s in that it is formulated in the simple theory of types. As a
result, for example, there are no quantifiers ranging over all sets, and there
is a set of all things (for each type).

∗30 on “Descriptive Functions” provides Whitehead and Russell’s analysis
of mathematical functions in terms of relations and definite descriptions.
Frege had used the notion of function, in the mathematical sense, as a
basic notion in his logical system. Thus a Fregean “concept” is a function
from objects as arguments to one of the two “truth values” as its values. A
concept yields the value “True” for each object to which the concept
applies, and “False” for all others. Russell, from 1904, well before the
writing of Principia had preferred to analyze functions in terms of the

ψ(x, y)
xRy

ϕ ψ R S
T
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relation between each argument and value, and the notion of “uniqueness”.
With modern symbolism, his view would be expressed as follows. For
each function , there will be some relation (in extension) , such
that the value of the function for an argument , that is , will be the
unique individual which bears the relation  to . (Nowadays we reduce
functions to a binary relation between the argument in the first place and
value in the second place.) The result is that there are no function symbols
in Principia. As Whitehead and Russell say, the familiar mathematical
expressions such as “ ” will be analyzed with a relation and a
definite description, as a “descriptive function”. The “descriptive
function”,  (the  of , is defined as follows:

We conclude this section by presenting a number of prominent examples
from these later numbers below, with their intuitive meaning, location in
PM, definition in PM, and a modern equivalent. (Some of these numbers
are theorems rather than definitions.) Note, however, that the modern
equivalent will sometimes logically differ from the original version in PM,
such as by treating relations as sets of ordered pairs, etc. In his account of
the logic of Principia, W.V. Quine (1951) objects to the complexity and
even redundancy of much of this symbolism. These formulas can be
worked out, however, with a step by step application of the definitions.

For each formula number, we present the information in the following
format:

PM Symbol (Intuitive Meaning)    [Location] 
PM Definition 
Modern Equivalent

(  is a subset of )    [∗22·01] 

λxf (x) R
a f (a)

R a

sin π/2

R‘y R y)
R‘y = ( x)xRy Dfι∗30·01 ι

α ⊂ β α β
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(the intersection of  and     [∗22·02] 
) 

(the union of  and )    [∗22·03] 
) 

(the complement of     [∗22·04] 
) [i.e., ) by ∗20·06] 

(  minus     [∗22·05] 
 

(the universal class)    [∗24·01] 
 =  

 or 

(the empty class)    [∗24·02] 
 

(the  of  (a descriptive function)    [∗30·01] 
(  

, where 

(the converse of     [∗31·02] 
 

x ∈ α . . x ∈ β⊃x
α ⊆ β

α ∩ β α β)
(x ∈ α . x ∈ βx̂ 

α ∩ β

α ∪ β α β
(x ∈ α ∨ x ∈ βx̂ 

α ∪ β

−α α)
(x∼ ∈ αx̂ ∼(x ∈ αx̂ 

{x ∣ x ∉ α}
α − β α β)

α ∩ −β
{x ∣ x ∈ α & x ∉ β}

V
(xx̂ x)

V {x ∣ x = x}
Λ

−V
∅

R‘y R y)
x)(xRy)ιι

(y)f −1 f = {⟨x, y⟩ ∣ Rxy}
R̆ R)

(zRx)x̂ ẑ 
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(the R-predecessors of     [∗32·01] 
 

(the R-successors of     [∗32·02] 
 

(the domain of     [∗33·11] 
 

(the range of     [∗33·111] 
 

(the field of     [∗33·112] 
 

(the relative product of  and     [∗34·01] 
 

(the restriction of  to     [∗35·02] 
 

(the Cartesian product of  and     [∗35·04] 
] 

, or 

{⟨x, z⟩ ∣ Rzx}
‘yR⃗ y)

(xRy)x̂ 
{x ∣ Rxy}

‘xR
← x)

(xRz)ẑ 
{z ∣ Rxz}

D‘R R)
{(∃y) . xRy}x̂ 

{x ∣ ∃yRxy}
‘RDD R)

{(∃x) . xRz}ẑ 
{z ∣ ∃xRxz}

C‘R R)
{(∃y) : xRy . ∨ . yRx}x̂ 

{x ∣ ∃y(xRy ∨ yRx)}
R ∣ S R S)

{(∃y) . xRy . ySz}x̂ ẑ 
{⟨x, z⟩ ∣ ∃y(xRy & ySz)}

R ↾ β R β)
[xRz . z ∈ β]x̂ ẑ 

{⟨x, z⟩ ∣ z ∈ β & Rxz}
α ↑ β α β)

[x ∈ α . z ∈ βx̂ ẑ 
αXβ {⟨x, z⟩ ∣ x ∈ α & z ∈ β}
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(the projection of  by     [∗37·01] 
 

(singleton of x)    [∗51·11] 
 

(the cardinal number 1)    [∗52·01] 
 

 (the class of all singletons)

(the cardinal number 2)    [∗54·02] 
 

 (the class of all
pairs)

(the ordinal couple of  and )    [∗55·01] 
 

 (the ordered pair )

Note: The paperback abridged edition of PM to ∗56 only goes this far, so
the remaining definitions have only been available to those with
access to the full three volumes of PM.

[∗70·01] 
 

 (the functions  from  to )

(the class of similarity relations betweeen  and )   
[∗73·01] 

R‘‘β β R)
{(∃y) . y ∈ β . xRy}x̂ 

{x ∣ ∃y(y ∈ β & Rxy)}

ι‘x
(z = x)ẑ 

{x}
1

{(∃x) . x = ι‘x}α̂ 
{x ∣ ∃y (x = {y})}

2
{(∃x, y) . x ≠ y . α = ι‘x ∪ ι‘y}α̂ 

{x ∣ ∃y∃z(y ≠ z & x = {y} ∪ {z})}

x ↓ y x y
ι‘x ↑ ι‘y
⟨x, y⟩ ⟨x, y⟩

α → β
( “ ‘R ⊂ α . “D‘R ⊂ βR̂ R⃗ D R

←

D

f : α → β f α β

α βsm⎯ ⎯⎯⎯⎯⎯⎯ α β

1 → 1 ∩ ‘α ∩ ‘β← ←
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(the relation of similarity)    [∗73·02] 
 

(the ancestral of     [∗90·01] 
 

Now written  this follows Frege’s definition:  is in all the -
hereditary classes  is in.

11. Arithmetic in Volume II

Volume II of Principia Mathematica begins with Part III, “Cardinal
Arithmetic”. The notions of cardinal numbers are developed in full
generality, extending to infinite cardinals. Consequently the theory of
natural numbers, which are called “Inductive Cardinals” in PM, is
introduced with a series of definitions of special cases of notions that are
first introduced in a general form applying to any numbers or classes. For
example, addition of natural numbers, as in the famous proof that 1 + 1 =
2 in ∗110·04 is proved with for the special case of the addition of classes
that applies to cardinal numbers, ‘ ’. These definitions, concluding with
the appearance of the Axiom of Infinity at ∗120·03 will conclude this
introduction to the symbolism of Principia Mathematica.

(the Cardinal Numbers)    [∗100·01] 
 

This is actually the relation between a class and its cardinal number. 
 

Cardinal numbers are classes of equinumerous (similar) classes.

1 → 1 ∩ ‘α ∩ ‘βD
← D←

D

{f ∣ f : α β}⟶1−1

sm
(∃!α β)α̂ β̂ sm⎯ ⎯⎯⎯⎯⎯⎯

α ≈ β

R∗ R)
{x ∈ C‘R : “μ ⊂ μ . x ∈ μ . . y ∈ μ}x̂ ŷ R̆ ⊃μ

R∗ y R
x

+c

Nc
sm−→

{x ∣ ∀y(y ∈ x ↔ ∀z∀wz, w ∈ y ↔ z ≈ w))}
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(the cardinal number 0)    [∗101·01] 
 

 
The class of all classes equinumerous with the empty set is just the
singleton containing the empty set.

(the arithmetic sum of  and )    [∗110·01] 
 

This is the union of  and  after they are made disjoint by pairing each
element of  with  and each element of  with . The classes 
and  are intersected with the empty class, , to adjust the type of the
elements of the sum. 

(the cardinal sum of  and )    [∗110·02] 
 

Cardinal addition is the arithmetical sum of “homogeneous cardinals”,
cardinals of a uniform type, to which  and  are related by  (itself
defined [∗103·01]). 

The reader can now appreciate why this elementary theorem is not proved
until page 83 of Volume II of PM:

Whitehead and Russell remark that “The above proposition is occasionally
useful. It is used at least three times, in …”. This joke reminds us that the
theory of natural numbers, so central to Frege’s works, appears in PM as
only a special case of a general theory of cardinal and ordinal numbers and
even more general classes of isomorphic structures.

0
0 = ‘ΛNc
{∅}

α + β α β
↓ (Λ ∩ β)“ι“α ∪ (Λ ∩ α) ↓ “ι“β)

α β
β {α} α {β} α

β Λ

(β × {α}) ∪ (α × {β})
μ ν+c μ ν

{(∃α, β) . μ = c‘α . ν = c‘β . ξ sm(α + β)}ξ̂ N0 N0

α β cN0

{x ∣ x ≈ (β × {α}) ∪ (α × {β})}

1 1 = 2+c∗110·643
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This survey of the notation in PM concludes with the definition of the
natural numbers and a statement of the Axiom of Infinity, which allow the
proof of the other axioms of Peano Arithmetic as, again, special cases of
more general notions.

NC induct (the Inductive Cardinals)    [∗120·01] 
 

 
The inductive cardinals are the “natural numbers”, are 0 and all
those cardinal numbers that are related to 0 by the ancestral of the
“successor relation” , where  just in case .

Infin ax (the Axiom of Infinity)    [∗120·03] 
 
 

The Axiom of Infinity asserts that all inductive cardinals are non-
empty. (Recall that 0 = , and so 0 is not empty.) The Axiom of
Infinity is not a “primitive proposition” but instead to be listed as an
“hypothesis” where used, that is as the antecedent of a conditional,
where the consequent will be said to depend on the axiom.
Technically it is not an axiom of PM as [∗120·03] is a definition, so
this is just further notation in PM!

12. Conclusion

The definitions up to ∗120·03 constitute only about half of the definitions
in PM. The last eight pages (667–674) of Volume I of the second edition
(1925) consists of a complete “List of Definitions” from all three volumes.
Correspondence in the Bertrand Russell Archives suggests that this list
may have been compiled by Dorothy Wrinch. The list can be used to trace

{α( 1 0}α̂ +c )∗
{x ∣ 0 x}S∗

S xSy y = x + 1

α ∈ NC induct. .∃!α⊃α
∀y({x ∣ 0 x} ⊃ y ≠ ∅)S∗

{∅}
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every one of the defined expressions of PM back to the notation discussed
in this entry.
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