REFERENCE MANUAL

KX SYSTEMS
VERSION 2.0


IMPORTANT
This manual describes the capability of K, the complete application development environment and analytical platform from Kx Systems. The manual is being provided with a demo copy of K-Lite, which is a subset of the K product.

K-Lite is a time-limited, reduced version of K which enables interested developers to learn the language and develop small applications. K-Lite consists of the K language and interpreter, GUI software, and ASCII file read/write capability. It does not include connections, file mapping, interprocess communications or runtime capabilities.

K-Lite is for educational purposes, and is not intended for commercial use. Accordingly, Kx Systems does not provide training, technical support or upgrades. K-Lite is not meant as an alternative to K, but an introduction to it.

21 July 1998


This manual describes the capability of K, the complete application development
environment and analytical platform from Kx Systems. The manual is being
provided with a demo copy of K-Lite, which is a subset of the K product.

K-Lite is a time-limited, reduced version of K which enables interested develop-
ers to learn the language and develop small applications. K-Lite consists of the K
language and interpreter, GUI software, and ASCII file read/write capability. It
does not include connections, file mapping, interprocess communications or
runtime capabilities. K-Lite is for educational purposes, and is not intended for
commercial use. Accordingly, Kx Systems does not provide training, technical
support or upgrades. K-Lite is not meant as an alternative to K, but an introduc-
tion to it.

K Reference Manual Copyright © 1998 by Kx Systems, Inc.

Edition 1, revision 4. All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the copyright owner.

This book is furnished for informational use only, is subject to change without notice, and should
not be construed as a commitment by Kx Systems, Inc. Kx Systems assumes no responsibility or
liability for any errors or inaccuracies that may appear in this book. The software described in this
book is furnished under license and may only be used or copied in accordance with the terms of
this license.



NTENTS

1: INTRODUCTION 11
What is K? 11
Dependencies and Data Bases 11
The Language 12
Graphical User Interface 14
Connectivity 14
Component Management 15
About this manual 15

2: SYNTAX 17
Nouns 17
Verbs 18
Adverbs 19
List Notation 20
Index and Argument Notation 20
Conditional Evaluation and Control Statements 21
Function Notation 21
Juxtaposition and Vector Notation 21
Compound Expressions 22
Empty Expressions 22
Colon 22
Names 23
Function Composition 23
Adverb Composition 24
Fixing the Left Argument of the Dyad of a Verb 24
Precedence and Order of Evaluation 24

K Reference Manual




Incomplete Expressions 25
Spaces 26
Special Constructs 27

3: TERMINOLOGY 29
Atoms 29
Atom Functions 29
Character Constant 32
Character String 32
Character Vector 32
Comparison Tolerance 32
Conformable Data Objects 33
Console 35
Dependencies 35
Dependent Variables 36
Depth 36
Dictionary 37
Dyad 37
Empty List 37
Entry 37
Escape Sequence 38
Floating-Point Vector 38
Function Atom 38
Handle 39
Homogeneous List 39
Integer Vector 39
Item 40
K-Tree 40
Left-Atomic Function 41
List 41
Matrix 41
Monad 41
Nil 41
Nilad 42
Numeric List 42
Numeric Vector 42
Primitive Function 42



Rank 42

Rectangular List 42
Right-Atomic Function 43
Script 43

Simple List 44

Simple Vector 44

String 44

String-Atomic Function 44
String Vector 44

Symbol 44

Symbol Vector 45
Trigger 45

Valence 45

Vector 45

Vector Notation 46

4: VERBS 47
Amend Item 47
Amend 51
Apply (Monadic) 57
Apply 58
Atom 60
Count 61
Divide 62
Drop / Cut 63
Enlist 65
Enumerate 66
Equal 67
Find 68
First 69
Flip 70
Floor 72
Format 73
Format (Dyadic) 74
Form 76
Function Inverse 78
Grade Down 80

K Reference Manual



Grade Up 83
Group 84

Index Item, or At 86
Index, or Of 88
Join 93

Less 94

Make / Unmake Dictionary 96
Match 97
Max / Or 98
Min/And 99

Minus 100

More 101

Negate 103

Not / Attribute 104
Plus 105

Power 106

Range 107
Reciprocal 108
Reverse 109
Rotate / Mod 110
Shape 112
Take / Reshape 114
Times 117
Value / Execute 118
Where 120

5: ADVERBS 121
Each 122
Each Left 125
Each Pair 127
Each Right 128
Over Dyad 130
Over 133
Over Monad 135
Scan Dyad 137
Scan 138
Scan Monad 139



6: AMEND, INDEX, APPLY & ASSIGN 141

Amend 142

Amend 144

Apply 146

Execute 148

Index 149

ltem Amend 150

ltem Index 152

Apply Monad 153

7: FUNCTIONS 155
Projection; Fixing Function Arguments 156
Localization 157
Local Functions 158

8: ATTRIBUTES 159
Arrangement 160
Background Color / Foreground Color 161
Class 162
Click / Double Click 162
Dependency 162
Editable 163
Format 163
Help 163
Label 164
Option List 164
Trigger 164
Update 164
Validation 165
Width / Height 166

9: CONDITIONALS 167
Conditional Evaluation 167
Do 168
If 169
While 170

K Reference Manual



10: CONTROLS AND DEBUGGING 171
Abort 171
Comment 172
Resume 172
Return 173
Signal 173
Stop / Trace 175

11: 1/0 AND COMMUNICATION 177
Load / Save Text File 177
Load Text File as Fields 179
Load/Save K Data as K Files 181
Load Binary File as Fields 182
Copy K Data from K File 184
Link Object Code 185
Communication Handle 186
Close Handle 187
Remote Set 188
Internal Data Type 190
Remote Get 191
Executable Form 193
Synchronized File Append 194
Interprocess Communication 195

12: COMMANDS 197
Adverbs 197
Assignment, Functions, Control 197
Attributes 197
Break Flag 198
Commands 198
Console Flag 198
Data and 1/0O Verbs 198
Directory 198
Directory Entries 199
Error Flag 199
Exit 199
Interrupt 200



Invalid Values 200
Load 200

OS Command 200
Print Precision 200
Random Seed 201
Runtime Program 201
Set Timer 201

Step 202

System Names 202
Time 202

Verbs 202
Workspace Size 202

13: SYSTEM VARIABLES 203
Current Directory 203
Current Global Set 203
Current Time 204
Host Process (Machine Name) 204
Host Process (Port) 204
Items Changed 204
Message Source (Handle) 204
Message Source (User) 204
Nil Value 205
Self Referent 205

14: SYSTEM FUNCTIONS 207
Binary Search 207
Delete Indices 209
Delete Value / Delete Value List 210
Draw 211
GMT Time / Local Time 212
Integer from Character / Character from Integer 213
Julian Day from Date / Date from Julian Day 214
Least Squares 215
Math Functions 217
Matrix Functions 218
Membership / List Membership 219

K Reference Manual



Scalar from Vector 220

String Match 222

String Search 223

String Search and Replace 225
Vector from Scalar 226

15: SCREEN DISPLAYS 229
Data Presentation 230
Display Classes 232

INDEX 235

10



CHAPTER 1

DUCTION

What is K?

K is a high-level, interactive application development environment that is oriented
towards performance and system integration as well as functionality. It is designed
for the rapid deployment of dynamic applications that scale, that is, applications
with potentially large amounts of data that require very short development and
maintenance cycles. K has all the necessary components of application develop-
ment: database management, graphical user interface, connectivity to other prod-
ucts and languages, interprocess communication, component management and a
vector expression programming language, also called K. All K components pro-
vide their functions in effective, highly abstract ways that together greatly reduce
application code mass and development time without subsequent loss in machine
efficiency. And in cases where special functionality is required, C programs can be
written and seamlessly integrated into K.

Dependencies and Data Bases

Two of the most successful programming models in application software are spread-
sheets and relational databases. Spreadsheets provide a convenient, easily under-
stood user interface for data layout and interdependence of data values based on
formulas. Relational databases provide, in principle, a mathematically consistent
way to create application-specific views of data stored in base tables. Despite the
popularity and widespread use of these models, the popular commercially-avail-
able implementations have severe limitations in the application area where K stakes

K Reference Manual 11



its claim: spreadsheets, while rich in features, are only effective for relatively small
amounts of data, and access to relational data is much more inefficient, awkward
and tedious than the relational model suggests.

K brings both the spreadsheet and relational database models to bear on problems
with large amounts of data. The data in these problems tend to be organized in
homogeneous fields with many items, that is, fields that each consist entirely of
one type of data, such as floating-point numbers or character strings. It is crucial in
these applications to manage long fields of homogeneous data effectively, and K
does that for both the spreadsheet and relational database models. In the case of
spreadsheet-like interactions, K dependencies describe interrelations among entire
fields — not just on individual cells within those fields — while relational tables
can be organized in files so as to appear like ordinary K data objects to applica-
tions, thereby bringing the complete language and graphical user interface to bear
directly on stored data.

On the other hand, K is not restricted to problems in which the data are organized
in homogeneous fields. The general data structure of the language is lists of lists,
which accept heterogeneous mixtures of the underlying data types, but have ho-
mogenous fields as special cases. Consequently the more common logical organi-
zations of data as individual cells in spreadsheets and records in relational data-
bases are also available.

The Language

12

The language is a compact and complete formula vector language that can imple-
ment any algorithm, usually with much less code than conventional scalar-oriented,
control-structure-based languages. For example, the following expression defines
present value as a spreadsheet-like dependency on cash flows, discounts, and pay-
ment dates:

PresentValue..d :"+/ CashFlows * Discounts[Dates]"

The execution of this expression, “sum the product of the cash flows and discounts
at specified dates”, is as efficient as a native C program. And whenever CashFlows,
Discounts, or Dates changes, a subsequent reference of PresentValue will cause its
new value to be computed.



Or, consider a common relational table manipulation to link two tables A and B on
a field F, which means realign the records of A and B so that they match up on field
F. If F is a key field in A, that is, has unique items, then B can be left unchanged
while A is realigned relative to B. The indented lines in those below give a K
expression, and the non-indented line or lines below give the value of the expres-
sion. First, an index field | and key field F are defined for table A. Then the field F
is defined for B. Next we look for the index in A.F of each item of B.F. Finally, we
show the complete expression for realigning A relative to B, and the result of ex-
ecuting that expression:

A.I: 1 2 3

A.F: 2 5 7

BR.F: 52522 72571745
A.F ?/: B.F
1010020121

A[; A.F ?2/: B.F]
(2121131232
525227 25715)

There is nothing in this expression suggesting that the table A and the fields A.F
and B.F are anything other than ordinary variables. No matter how files are orga-
nized in a K database, whether as fields or more general lists, once opened they are
treated like ordinary data objects. This is part of the foundation for building appli-
cations that scale: applications can be developed using local workspace test data,
and then applied to data in files without any code modification.

Most languages assign the basic arithmetic functions to symbols and permit ex-
pressions to be formed in the common mathematical way, for example with the
symbols between pairs of arguments, agir y * z for “x plusytimes z.” K

has a much richer set of primitives that can be used in this manner, including ones
for common functions like sorting and searching, summarizing and updating. Many
other functions can be expressed in terms of these primitives, which has two prin-
cipal effects. First, the K implementation has made these few primitives as effi-
cient as possible. And secondly, it is worthwhile for K programmers to use this
expressiveness as much as possible, thereby taking advantage of the underlying
efficient implementation, and indirectly greatly reducing the code volume that would
otherwise result from reliance on control structures for everything beyond a few
arithmetic expressions.

K Reference Manual 1: Introduction 13



In fact, the primitives run at or close to maximum machine performance. On a Sun
workstation (40 mhz Sparc 10) it is possible to sort 1,000,000 records per second in
tables with tens of millions of records. Searching is constant time. Data access,
update and append are also constant time. Sorting is linear time. The simplest and
fastest algorithms are used in the implementation of the primitive functions.

Graphical User Interface

The value of a variable can be printed during an interactive K session simply by
entering its name alone on a line. The value can also be shown on a display screen
in any one of the usual ways: as a chart, table, button, layout, and so forth, and
almost as simply as entering its name. For example, if n is a list of numbers, you
may chart these as x-values by assigning “chart” as n’s display class attribute:

n..c: “chart
followed by
‘show $ 'n

The screen display of any value and the value itself are tightly coupled: if the screen
view is edited, the value of the variable is automatically changed accordingly, and

if the variable changes, so does the view. Spreadsheet-like dependencies displayed
on the screen are automatically updated so that displays of all formula relation-
ships are consistent.

The implementation of display screens is also very efficient, relying on low level
graphics functions. For example, relational tables with tens of millions of records
can be viewed and scrolling is instantaneous.

Connectivity

14

The K environment connects easily and efficiently with other products, either as
subroutines callable within K applications or by way of interprocess communica-
tion. K is a very good environment for working with C and Fortran. A subroutine
written in one of these languages can be dynamically loaded into the K environ-
ment, where test data can be interactively generated and results displayed in a vari-
ety of ways. Such tests may suggest changes to the source code, which is easily
reloaded after changes have been made.



In addition to being able to call C subroutines from a K application, it is also pos-
sible to connect to other products with process-to-process message passing. Values
can be set and retrieved from processes and expressions can be remotely executed,
all based on ordinary language expressions. Any transaction can be phrased as a
single message, and therefore any transaction can be made atomic.

Component Management

Application code is organized in a hierarchical name space called the K-tree. Every
utility library can be assigned its own place in the hierarchy to avoid name con-
flicts. All screen objects — indeed all objects tied to events — are global variables
in the name space, as are all their attributes. Attributes occupy special positions in
the name space relative to the variables they modify. Every component in an appli-
cation is a data object in the K-tree, including open data sets, programs, screen
objects and their attributes, and messages to and from other processes.

About this manual

This manual provides a complete definition of the K language. See the K User
Manual for examples of its use and an introduction for new users. If you are new to
K and the User Manual is not available, familiarize yourself with the first two
chapters before using the rest of this manual.

K Reference Manual 1: Introduction 15



16



CHAPTER 2

SYNTAX

This chapter is concerned with two things: how to arrange symbols and names into
expressions, and the way these expressions are executed. The purpose is to not only
explain which lines of characters are meaningful and which are not, but also to
help programmers read and write applications. Thus, the content of the chapter is
not just syntax; there is often reference to the meanings of the symbols in order to
place things in context.

All printable ASCII symbols have syntactic significance. Some denote verbs, that
is, actions to be taken; some denote nouns, which are acted on by verbs; some
denote adverbs, which modify nouns and verbs to produce new verbs; some are
grouped to form names and constants; and others are punctuation that bound and
separate expressions and expression groups.

The termtokenis used to mean one or more characters that form a syntactic unit.
For instance, the tokens in the expression. 86 +/ LIST are the con-
stant 10. 86, the nameLIST, and the symbols- and / . The only tokens that

can have more than one character are constants and names.

At various points in this chapter it is necessary to refer to the token to the left or
right of another unit. Terms like “immediately to the left” and “followed immedi-
ately by” mean that there are no spaces allowed between the two tokens.

Nouns

All data are syntacticallgouns Data include atomic values, collections of atomic
values in lists, lists of lists, and so on. The atomic values include the usual charac-
ter, integer, and floating-point values, as well as symbols, functions, dictionaries,

K Reference Manual 17



and a special atomn, callednil. All functions are atomic data. List constants
include several forms for the empty list denoting the empty integer list, empty
symbol list, and so on. One-item lists use the comma to distinguish them from
atoms, as in, 2 (the one-item list consisting of the single integer item 2).

Numerical (integer and floating-point) constants are denoted in the usual ways,
with both decimal and exponential notation for floating-point numbers. The spe-
cial numeric atom® T andON refer to integer infinity and “not-a-number” (or
“null” in database parlance) concepts, and similardyandOn for floating-point.

A negative numerical constant is denoted by a minus sign immediately to the left of
a positive numerical constant.

An atomic character constant is denoted by a single character between double quote
marks, as in'a"; more than one such character, or none, between double quotes
denotes a list of characters. A symbol constant is denoted by a back-quote to the
left of a string of characters that form a valid name, asiin.b_2. The string of
characters can be empty; that is, back-quote alone is a valid symbol constant. A
symbol constant can also be formed for a string of characters that does not form a
valid name by including the string in double-quotes with a back-quote immediately
to the left, as in "a-b!".

Dictionaries are created from lists of a special form. Functions can be denoted in
several ways, all of which are presented below. In effect, any notation for a func-
tion without its arguments denotes a constant function atom, suehfasthe

Plus function.

Verbs

18

Each of thesymbols - * ¢ | ¢ ~ <> =1 # ~ $ 2 @ .and,
represents &erh They are called verbs in general, but are also cplieditive
verbswhen it is necessary to distinguish them fromdbgved verbgormed by
adverbs, described in the next section. Any verb can appear between nouns, as in

2 - 3

or to the left of a noun with either nothing or something other than a noun to its left,
asin



-3
=3 .
12.5 + - 3

Expressions like - 3 are calledinfix expressions, and those like the latter three
are calledprefix expressions.

Whenever a verb appears in one of these two ways its functional meaning is deter-
mined. For example; denotes subtraction in the expressibn- 3, and nega-

tion in the three example prefix expressions. Every verb denotes two functions: a
function of two arguments when there are nouns to the left and right, and a function
of one argument when there is a noun to the right but not to the left. These func-
tions are called thdyadic and monadicfunctions of the verb, respectively, or,
more simply, thelyadand themonad

Adverbs

There are three adverb symbols and three adverb symbol pairs; slash and slash-
colon (/ and / :), back-slash and back-slash-colox &nd \ :), and quote and
guote-colon (" and ' :). Any one of these, in combination with the noun or verb
immediately to its left, denotes a new verb. For instanrge,denotes a verb that

can appear between nouns, asint-/ b, or to the left of a noun with no noun to

its left, as in+/ b. The resulting verb is a variant of the object modified by the
adverb. For examplet is Plus and+/ is Sum:

+/ 1 2 3 4 sumthelist1 2 3 4
10

16 +/ 1 2 3 4 sum the list with starting value 6
26

Verbs created by adverbs are calliedived verbs The functions associated with
primitive verbs are callegrimitive functions while those associated with derived
verbs are calledlerived functions

K Reference Manual 2: Syntax 19



List Notation

A sequence of expressions separated by semicolons and surrounded by left and
right parentheses denotes a noun callédtaThe expression for the list is called

alist expressionand this manner of denoting a list is calistinotation For ex-

ample:

(3 +4; a b; -20.45)

denotes a list. The empty list is denoted(by but otherwise at least one semico-

lon is required. When parentheses enclose only one expression they have the com-
mon mathematical meaning of bounding a sub-expression within another expres-
sion. For example, in

(a * b) + ¢

the producta * b is formed first and its result is added to c; the expression
(a * D) is not list notation. One-item lists use the Enlist verb (comma), as in
,"a" and,3.1416.

Index and Argument Notation

20

A sequence of expressions separated by semicolons and surrounded by left and
right brackets [ and]) denotes either the indices of a list or the arguments of a
function. The expression for the set of indices or arguments is callediex
expressioror argument expressio@and this manner of denoting a set of indices or
arguments is calleddexor argument notationFor examplem[0; 0] selects the
element in the upper left corner of a matrix m, ahih ; b; c] evaluates the tri-

adic function f with the three arguments a, b, and c. Unlike list notation, index and
argument notation do not require at least one semicolon; one expression between
brackets will do.

Verbs can also be evaluated with argument notation. For exampde,b] means
the same as + b. Alldyadic verbs can be used in either prefix or infix notation.

Bracket pairs with nothing between them also have meaning;selects all items

of a list m andf [ ] evaluates the nilad f. Finally, there is the special farm ]

for a dictionary d, which produces a list of all the attribute dictionaries for the
entries of d.



Conditional Evaluation and Control Statements

A sequence of expressions separated by semicolons and surrounded by left and
right brackets [ and] ), where the left bracket is preceded immediately by a colon,
denotes conditional evaluation. If the wosid, if, or while appears instead

of the colon then that word together with the sequence of expressions denotes a
control statement. The first line below shows conditional evaluation; the next three
show control statements:

14 14

d 14 14

a;b;c]
a;b;c]
fla;b;c]
a;b;c]

14

.
—/ o/ o/

whlle

14

Function Notation

A sequence of expressions separated by semicolons and surrounded by left and
right braces { and}) denotes a function. The expression for the function defini-
tion is called afunction expressigrand this manner of defining a function is called
function notation The first expression in a function expression can optionally be

an argument expression of the fofmame1 ; name2; ...; nameN] specifying the
arguments of the function. Like index and argument notation, function notation
does not require at least one semicolon; one expression (or none) between braces
will do.

Juxtaposition and Vector Notation

There is another similarity between index and argument notation. Prefix expres-
sions evaluate monadic functions, or monads, of verbs, as.imhis form of
evaluation is permitted for any monad. For example:

{x - 2} 5
3

This form can also be used for item selection, as in:

(1; "a"; 3.5; “xyz) 2
3.5

K Reference Manual 2: Syntax 21



Juxtaposition is also used to form constant numeric lists, as in:

3.4 57 1.2e20

which is a list of three items, the first 3.4, the second 57, and the third 1.2e20. This
method of forming a constant numeric list is calledtor notation

The items in vector notation bind more tightly than the objects in function call and
item selection. For exampléx - 2} 5 6 isthe function{x - 2} applied to
the vector5 6, not the function{x - 2} applied to 5, followed by 6.

Compound Expressions

As a matter of convenience, function expressions, index expressions, argument
expressions and list expressions are collectively referreddonagound expres-
sions

Empty Expressions

An empty expression occurs in a compound expression wherever the place of an
individual expression is either empty or all blanks. For example, the second and
fourth expressions in the list expressioitb; ; c—d; ) are empty expressions.
Empty expressions in both list expressions and function expressions actually repre-
sent a special atomic value callat

Colon

22

The colon has several uses, including conditional evaluaiipa;({; c]) noted
previously. Its principal use is denoting assignment. It can appear with a name to its
left and a noun or verb to its right, or a name followed by an index expression to its
left and a noun to its right, as w: vy and x[i] :y. It can also have a primitive

verb immediately to its left, with a name or a name and index expression to the left
of that, asinx+:y and x[1], : y. A pair of colons within a function expression
denotes global assignment, that is, assignment to a global hame &::3 ; ..}).

The verbs associated with 1/0 and interprocess communication are denoted by a
colon following a digit, asin0: and 1: .



A colon used monadically in a function expression, asin, means return with
the result r.

A verb with a noun to its right is a dyad if there is also a noun to its left, and is
otherwise a monad. These are imenediate usesf a verb, because evaluation
takes place immediately. Other uses are not immediate. For example, a verb that is
modified by an adverb is not evaluated immediately, although the derived function
may be. Other than in immediate use, the verb always denotes its dyad. For ex-
ample, the firstitem in the ligt-; 3) is the minus functiorx - v. Ifitis needed,

the monad can be specified by appending a colon to the right of the symbol, as in
(-:;3), where the first item is now the negate functionx. The monad cannot

be used for derived verbs, and cannot be used when there is a noun to the right of
the verb.

Names

Names consist of the upper and lower case alphabetic characters, the numeric char-
acters, dot () and underscore §. The first character in a name cannot be numeric.
Names whose first character is the underscore are system names, and cannot be
created by users. There are several system names that are syntactically like the
dyads of verbs. For examplebin is one, and can be evaluated by bin b

or bin[a;b]. Names with dots areompoundnames, and the segments be-
tween dots are simple names. All simple names in a compound name have mean-
ing relative to the K-tree, and the dots denote the K-tree relationships among them.

At most two dots in a row can occur in names. Any simple name following two dots
denotes an entry in an attribute dictionary. Compound names beginning with a dot
are calledabsolutenames, and all others astative names.

Function Composition

Any sequence of primitive verb symbols that is not immediately followed by a
noun or adverb denotes a dyadic function. Each symbol denotes its monad except
the rightmost one, which denotes its dyad. For example), [a;b] iS % (a - b)

and the functiome : ~= is “not equals”. Composed dyads cannot be used in infix
expressions because of ambiguity problems. For examplel meansa~ (=b),

which is quite different from~a=b or ne[a;b].

K Reference Manual 2: Syntax 23



If the right-most symbol in such a sequence is followed by a colon immediately to
its right, the colon modifies that symbol and denotes the monad of that verb, and
the sequence with the colon denotes a monad. For example) 3 is % (- 3).

Adverb Composition

A verb is created by any string of adverb symbols with a noun or verb to the left of
the string and no spaces between any of the adverb symbols or between the noun or
verb and the leftmost adverb symbol. For examplg,/ :\ : is a well-formed

adverb composition. The meaning of such a sequence of symbols is understood
from left to right. The leftmost adverb modifies the verb or noun to create a new
verb, the next adverb to the right of that one modifies the new verb to create an-
other new verb, and so on, all the way to the adverb at the right end.

Fixing the Left Argument of the Dyad of a Verb

If the left argument of a dyad is present but the right argument is not, the argument
and verb symbol together denote a monad. For exampledenotes the monad
“3 plus”, which in the expression3 +) 4 is applied to 4 to give 7.

Precedence and Order of Evaluation

24

All verbs in expressions have the same precedence, and with the exception of cer-
tain compound expressions the order of evaluation is strictly right to left. For ex-
ample,

a * b + c

is a* (b+c), not (a*b) +c.

This rule applies to each expression within a compound expression and, other than
the exceptions noted below, to the set of expressions as well. That is, the rightmost
expression is evaluated first, then the one to its left, and so on to the leftmost one.
For example, in the following pair of expressions, the first one assigns the value 10
to x. In the second one, the rightmost expression uses the value of x assigned above,;
the center expression assigns the value 20 to x, and that value is used in the leftmost
expression:



x: 10
(x + 5; x: 20; x - 5)
25 20 5

The sets of expressions in index expressions and argument expressions are also
evaluated from right to left. However, in function expressions, conditional evalua-
tions, and control statements the sets of expressions are evaluated left to right. For
example:

f:{a : 10; : x + a; a : 20}
f[5]
15

The reason for this order of evaluation is that the function f written on one line
above is identical to:

f:{ a : 10
X + a
a : 20 1}

It would be neither intuitive nor suitable behavior to have functions executed from
the bottom up. (Note that in the context of function expressions, monadic colon is
Return.)

Incomplete Expressions

Individual expressions can occupy more than one line in a source file or can be
entered on more than one line in an interactive session. Expressions can be broken
at the semicolons that separate the individual expressions within compound ex-
pressions, and when this is done the semicolon should be omitted; in effect, con-
tinuing an expression on a new line inserts a new-line character as the statement
separator. For example:

(a + Db
c - d)

is the list (a+b; c-d). The effect of a semicolon at the end of a line within an
incomplete expression is to introduce an empty expression. For example:

K Reference Manual 2: Syntax 25



(a + b;
c - d)

is the three item lista+b; ; c-d).

Note that whenever a set of expressions is evaluated left to right, such as those in a
function expression, if those expressions occupy more than one line then the lines
are evaluated from top to bottom.

Spaces

Any number of spaces are usually permitted between tokens in expressions, and
usually the spaces are not required. The exceptions are:

* No spaces are permitted between the symbols
* ' and: when denoting the adverb:
* \ and: when denoting the adverk:
» / and: when denoting the advertx
* a digit and: when denoting a verb such @s
» : and: for assignment of the form name value;

* No spaces are permitted between an adverb symbol and the verb, noun or
adverb symbol to its left;

* No spaces are permitted between a primitive verb symbol and a colon to its
right whose purpose is to denote either assignment or the monadic case of
the verb;

* No spaces are permitted between a left bracket and the character to its left.
That is, index and argument notation as well as the left bracket in a condi-
tional evaluation or control statement must immediately follow the token to
its left;

* If a / is meant to denote the left end of a comment then it must be preceded
by a blank, for otherwise it will be taken to be part of an adverb;

26



 Both the underscore characte) &nd dot character. § denote verbs and
can also be part of a name. The default choice is part of a name. A space is
therefore required between an underscore or dot and a name to its left or
right when denoting a verb;

* At least one space is required between neighboring humeric constants in
vector notation;

* A minus sign £) denotes both a verb and part of the format of negative
constants. A minus sign is part of a negative constant if it is next to a posi-
tive constant and there are no spaces between, except that a minus sign is
always considered to be the verb if the token to the left is a name, a con-
stant, a right parenthesis or a right bracket, and there is no space between
that token and the minus sign. The following examples illustrate the various

cases:

x-1 X minus 1

x -1 x applied to -1

3.5-1 3.5minus 1

3.5 -1 numeric list with two elements
x[1]-1 x[1] minus 1

(a+b)- 1 (a+b) minus 1

Special Constructs

Slash, back-slash, colon and single-quoteY : ' ) all have special meanings
outside ordinary expressions, denoting comments, commands and debugging con-
trols.

K Reference Manual 2: Syntax 27



28



CHAPTER 3

INOLOGY

Atoms

All data are atoms and lists composed ultimately of atoms. See Nouns in the chap-
ter Syntax.

Atom Functions

There are several recursively-defined primitive functions, which for at least one
argument apply to lists by working their way down to items of some depth, or all
the way down to atoms. The ones where the recursion goes all the way down to
atoms are callectom functionsor atomic functions

A monad is said to be atomic if it applies to both atoms and lists, and in the case of
a list, applies independently to every atom in the list. For example, the monad
Negate, which is monadic, is atomic. A result of Negate is just like its argument,
except that each atom in an argument is replaced by its negation. For example:

- 345 -(5 2; 3; -8 0 2)
-3 -4 -5 (-5 -2
-3
8 0 -2)

Negate applies to a list by applying independently to every item. Accessing the ith
item of a list x is denoted by [ 1] , and therefore the rule for how Negate applies
to a list x is that the ith item of Negate x , which'isx) [i] , is Negate applied to

the ith item, that isx [1] .

K Reference Manual 29



Negate can be defined recursively for lists in terms of its definition for atoms. To
do so we need two language constructs. First, any function f can be applied inde-
pendently to the items of a list by modifying the function with the Each adverb, as
in £' . Secondly, the monadic primitive function denotedilyis called Atom

and has the value 1 when x is an atom, and 0 when x is a list. Using these con-
structs, Negate can be defined as follows:

Negate:{:[ @ x; - x; Negate' x]}

That is, if xis an atom theNegate x is-x, and otherwis&iegate is applied
independently to every item of the list x. One can see from this definition that
Negate andNegate' are identical. In general, this is the definition of atomic:

a functiont of any number of arguments is atomicfifis identical tof ' .

A dyad f is atomic if the following rules apply (these follow from the general defi-
nition that was given just above, or can be taken on their own merit):

e f[x;y] is defined for atoms x and y ;

« for an atom x and a list y, the resuiff x; y] is a list whose ith item is
flx;yl[i]];

« for a list x and an atom y, the resuiff x; y] is a list whose ith item is
fix[il:yl;

« for lists x and y , the resutt[x; y] is a list whose ith item is
fix[il;ylil] .

For example, the dyad Plus is atomic.

2 + 3 2 6 + 3
5 59

2 + 3 -8 2 6 + 3 -8
5 -6 5 -2

(2; 3 4) + ((56; 78 9); (10; 11 12))



In the last example both arguments have count 2. The first item of the left argu-
ment, 2, is added to the first item of the right argument,6; 7 8 9), while

the second argument of the left argumeént, is added to the second argument of

the right argument(10; 11 12). When adding the first items of the two lists,

the atom 2 is added to every atomi 6; 7 8 9) togive(7 8; 9 10 11),

and when adding the second items, 3 is added to 10 to give 13, and 4 is added to
both atoms of11 12 togive 15 16.

Plus can be defined recursively in terms of Plus for atoms as follows:
Plus:{:[(@ x) & @ y; x + y; Plus'[x;vy]]}

The arguments of an atom function must be conformable, or else a Length Error is
reported. The evaluation will also falil if the function is applied to atoms that are
notin its domain. Forexample, 2 3 + (4;"a";5) willfailbecause2 + "a"

fails with a Type Error.

Atom functions are not restricted to monads and dyads. For example, the triadic
function {x+y~z} is an atom function (“X plus y to the power z”).

A function can be atomic relative to some of its arguments but not all. For example,
the Index primitivee [x; y] is an atom function of its right argument but not its
left, and is said to beght-atomig oratomic in its second argumentThat is, for
every left argument x the projected monadic funcii@nis an atom function. This
primitive function, like x [y], selects items from x according to the atoms in vy,
and the result is structurally like y, except that every atom in y is replaced by the
item of x that it selects. A simple example is:

2 4 -23 87 @ (04 ; 2)
(2 7
-23)

Index O selects 2, index 4 selects 7, and index 2 selects -23 . Note that the items
of x do not have to be atoms.

It is common in descriptions of atom functions elsewhere in this manual to restrict
attention to atom arguments and assume that the reader understands how the de-
scriptions extend to list arguments.

K Reference Manual 3: Terminology 31



Character Constant

A character constant is defined by entering the characters between double-quotes,
asin"abcdefg" . If only one character is entered the constant is an atom, other-
wise the constant is a list. For example," is an atom. The notation "a" is
required to indicate a one character list. See Escape Sequences for entering non-
graphic characters in character constants.

Character String

Character string is another name for character vector.

Character Vector

A character vector is a simple list whose items are all character atoms. When dis-
played in an interactive session, it appears as a string of characters surrounded by
double-quotes, as in:

"abcdefg”

not as individual characters separated by semicolons and surrounded by parenthe-
ses (that is, not in list notation). When a character vector contains only one charac-
ter, this is distinguished from the atomic character by prepending the Enlist monad
(comma), as in "x".

Comparison Tolerance

32

Because floating-point values resulting from computations are usually only ap-
proximations to the true mathematical values, the Equal primitive is defined so
that x = vy is 1 (true) for two floating-point values that are either near one an-
other or identical. To see how this works, first set the print precision so that all
digits of floating-point numbers are displayed.

\p 18 see Print Precision in the chapter Commands

The result of the following computation is mathematically 1.0, but the computed
value is different because the addend 0.001 cannot be represented exactly as a
floating-point number.



x: 0 initialize x to 0

do[1000;x+:.001] increment x one thousand times by 0.001

x the resulting x is not quite 1.000
0.9999999999999062

However, the expressiox = 1 has the value 1, and x is said totbkerantly
equal to 1:

x =1 is x equal 1?
1 yes
Moreover, two distinct floating-point values x and y for whigh= vy is 1 are
said to betolerantly equal No nonzero value is tolerantly equal to 0. Formally,

there is a system constdhtalled thecomparison tolerancesuch that two non-
zero values andb are tolerantly equal if:

la-b|< Exmax|al,|b]|)

but in practice the implementation is an efficient approximation to this test. Note
that according to this inequality, no nonzero value is tolerantly equal to 0. That is,
if a=0 is 1 thera must be 0. To see this, substitute Odfan the above inequality

and it becomes:

la| < Ex|a]
which, sinceE is less than 1, can hold onlyafs 0.

In addition to Equal, comparison tolerance is used in the verbs Find, Floor, More,
Less, Match, the adverbs Over and Scan for monads, and the system fufstion

Conformable Data Objects

The idea of conformable objects is tied to atom functions like Plus, functions like
Form with behavior very much like atom functions, and functions derived from

Each. For example, the primitive function Plus can be applied to vectors of the
same count, as in

123+ 456
579

but fails with a Length Error when applied to vectors that do not have the same
count, such as:

K Reference Manual 3: Terminology 33



34

123+ 45¢67
length error
123+ 45¢67

A

The vectors1 2 3 and 4 5 6 are said to beonformablewhile1 2 3 and
4 5 6 7 are not conformable.

Plus applies to conformable vectors in an item-by-item fashion. For example,
1 2 3+4 5 6 equals(1+4), (2+5), (3+6) ,or 5 7 9. Similarly, Plus of

an atom and a list is obtained by adding the atom to each item of the list. For
example,1 2 3+5 equals(1+5), (2+5), (3+5) ,0r 6 7 8.

If the argument lists of Plus have additional structure below the first level then Plus
is applied item-by-item recursively, and for these lists to be conformable they must
be conformable at every level; otherwise, a Length Error is reported. For example,
the arguments in the following expression are conformable at the top level — they
are both lists of count 2 — but are not conformable at every level.

(1 2 3;(4;5 6 7 8)) + (10; (11 12;13 14 15))

Plus is applied to these arguments item-by-item, and thereforel bdtis+10

and (4;5 6 7 8)+(11 12;13 14 15) are evaluated, also item-by-item.
When the latter is evaluated, 6 7 8+13 14 15 is evaluated in the process,
andsinces 6 7 8 and13 14 15 are not conformable, the evaluation fails.

All atoms in the arguments to Plus must be numeric, or else Plus will fail with a
Type Error. However, the types of the atoms in two lists have nothing to do with
conformability, which is only concerned with the lengths of various pairs of sub-
lists from the two arguments.

The following function tests for conformability; its result is 1 if its arguments con-
form at every level, and 0 otherwise.

conform:{ :[ (@x) | @y ; 1
(#x) = #y ; &/ x conform' y; 0]]}
That is, atoms conform to everything, and two lists conform if they have equal
counts and are item-by-item conformable (see Over Dyad in the chapter Adverbs
for the meaning of the derived functiar ).



Two objects x and y are saidd@onform at the top leveif they are atoms or lists,

and have the same count when both are lists. For example, if f is a dyad then the
arguments off ' (that is, f-Each) must conform at the top level. More generally, x
and y are said toonform at the top two levei$§ they conform at the top level and
when both are lists, the items[i] andy[i] also conform at the top level for
every index i; and so on.

These conformability concepts are not restricted to pairs of objects. For example,
three objects x, y, and z conform if all paksy andy, z and x, z are conform-
able.

Console

Console refers to the source of messages to K and their responses that are typed in
a K session.

Dependencies

Dependencies provide spreadsheet-like formulas within applications. A dependency
is a global variable with an associated expression describing its relationship with
other global variables. The expression is automatically evaluated whenever the
variable is referenced and any of the global variables in the expression have changed
value since the last time the variable was referenced. If evaluated, the result of the
expression is the value of the variable. If not referenced, the value of this variable
is the last value it received, either by ordinary specification or a previous evalua-
tion of the dependency expression.

The dependency expression is an attribute of a global variable whose value is a
character string holding the dependency expression, for example:

v..d: "b + c"
for “v is b+c”. For example:

b: 10 20 30

c: 100

v..d: "b + c"

v v has the value + ¢
110 120 130

K Reference Manual 3: Terminology 35



v[2]: 1000 v can be amended

Y
110 120 1000

b[l]: 25 amend any part of borc

% once again, v has the valuie + c
110 120 130

And of course, b and c can also be dependencies. Note that relative referents like b
and c are not resolved in the attribute dictionary of v, but are entries in the same

directory as v. Moreover, the dependency expression on v cannot contain an ex-

plicit reference to v itself.

Dependent Variables

If a dependency expression is defined for a variable v then v is saidlie ity
dependenon all those variables that appear in that expressiodepehdenton

all those variables than can cause it to be re-evaluated when it is referenced. Not
only is v dependent on all variables in its dependency expression, but on all vari-
ables in the dependency expressions of those variables, and so on.

Depth

36

The depthof a list is the number of levels of nesting. For example, an atom has
depth 0, a list of atoms has depth 1, a list of lists of atoms has depth 2, and so on.
The following function computes the depth of any data object:

depth:{:[ @ x; 0; 1 + |/ depth' x]}

That s, an atom has depth 0 and a list has depth equal to 1 plus the maximum depth
of its items. The symbols/ denote Max-Over. When applied to a list of numeric
values, as in|/ w , the result is the largest value in w (see Over Dyad). For
example:

depth 10 depth {x + vy}
0 0

depth 10 20 depth (10 20;30)
1 2

Depth is a useful notion that appears in several examples elsewhere in this manual.



Dictionary

A dictionaryis an atom that is created from a list of a special form, using the Make
Dictionary verb, denoted by the daf)( Each item in the list is a list of three items,

the entry, thevalue and theattributes The entry is a symbol, holding a simple
name, that is, a name with no dots. The value may be any atom or list. The at-
tributes are themselves a dictionary, giving the attributes of the item. An entry may
have no attributes, or equivalently an empty dictionary) () or nil. A dictionary

can be indexed by any one of its symbols, and the result is the value of the symbol.
When a dictionary is a global variable it is also a directory on the K-tree, and its

entries are the global variables in that directory. See Make/Unmake Dictionary and
K-tree.

Dyad

A dyad (or dyadic function) is a function of two arguments. Dyadic verbs may be
used in either infix or prefix notation. However, defined dyadic functions must be
used in prefix notation only.

Empty List

The generic empty list has no items, has count 0, and is denoted e empty
character vector is denotéd, the empty integer vectdro, the empty floating-

point vector0#0 . 0, and the empty symbol vecto# . The distinction between

() and the typed empty lists is relevant to certain verbs (e.g. Match) and also to
formatting data on the screen.

Entry
The entries of a dictionary d are the symbols given by its enumerationA

global dictionary is a directory on the K-tree, and its entries are the global variables
in that directory.

K Reference Manual 3: Terminology 37



Escape Sequence

An escape sequence is a special sequence of characters representing a character
atom. An escape sequence usually has some non-graphic meaning, for example the
tab character. An escape sequence can be entered in a character constant and dis-
played in character data. The escape sequences in K are the same as those in the C-
language, but often have different meanings. As in C, the sequendenotes the
backspace charactem denotes the new-line charactet, denotes the horizon-

tal tab character,\" denotes the double-quote character, anddenotes the
back-slash character.

In addition,\o and\oco and\ooo where eachv is one of the digits from 0
through 7, denotes an octal number. If the character with that ASCII value has
graphic meaning, that graphic is displayed, or if that character is one that can be
specified by one of the escape sequences in the first paragraph, that sequence is
displayed. For example:

"\b\a\ll" enter a character constant
"\ba\t" \b displays as\b, \a asa, \11l as\t

Floating-Point Vector

A floating-point vector is a simple list whose items are all floating-point numbers.
When displayed in a K session, it appears as a string of numbers separated by
blanks, as in:

10.56 3.41e10 -20.5
not as individual numbers separated by semicolons and surrounded by parentheses
(that is, not in list notation). The empty floating-point vector is denote. 0 .

Function Atom

A function can appear in an expression as data, and not be subject to immediate
evaluation when the expression is executed, in which case it is an atom. For ex-
ample:

38



f: + fis assigned Plus

@ f fis an atom
1

(£;102) f can be used like any other atom
(+;102)

Handle

A handle is a symbol holding the name of a global variable, which is a node in the
K-tree. For example, the handle of the name:. .b is "a c..b . The term
“handle” is used to point out that a global variable is directly accessed. Both of the
following expressions are used to amend x:

x: .[x; i; f£; v]
Coxs 1 £5 0]

In the first, referencing x as the first argument causes its entire value to be con-
structed, even though only a small part may be needed. In the second, the symbol
*x Is used as the first argument. In this case, only the parts of x referred to by the
index i will be referenced and reassigned. The second case is usually more efficient
than the first, sometimes significantly so. In the case where the value of x is a
directory, referencing the global variable x causes the entire dictionary value to be
constructed, even though only a small part of it may be needed. Consequently, in
the description of Amend, the symbol atoms holding global variable names are
referred to as handles.

Homogeneous List

A homogeneous list is one whose atoms are all of the same type. For example, a
character vector is a homogeneous list of depth 1. A list of integers is one whose
atoms are all integers. Similarly for a list of characters, or floating-point numbers,
or symbols.

Integer Vector

An integer vector is a simple list whose items are all integers. When displayed in a
K session, it appears as a string of numbers separated by blanks, as in:

K Reference Manual 3: Terminology 39



10 20 -30 40

not as individual integers separated by semicolons and surrounded by parentheses
(that is, not in list notation). The empty integer vector is denbted

Item

An item is a component of a list, and may be either an atom or a list. The item of x
at index position i is called the ith item and is denotedby ].

If an item is a list then it also has items, and any of these items that are lists may
have items, and so on. Items of a list are sometimes tafiddvel itemso distin-

guish them from items of items, items of items of items, etc., which are generally
referred to agems-at-depth When it is necessary to be more specific, top-level
items are called items at level 1 or items at depth 1, items of items are called items
atlevel 2 or items at depth 2, and so on. Generally, an item is at depth n if it requires
n indices to reach it.

There is also the related conceptiteims of specified deptimeaning items-at-
depth that are a specified level above the bottom. For example, items of depth 1
would be lists of atoms within another list, as in:

(1 2 3;(4 5; ("a"; 'bec)))

where the items of depth 1 are2 3 and4 5 and("a"; “bc). (The items at
depthlara 2 3 and(4 5; ("a"; 'bc)) .) Generally, an item is of depth n if
there is atom within it that is at depth n, but no atom at depth

A list may contain one or more empty items (i.e. the nil valu® which are
typically indicated by omission:

(L ; n; 2)

(1;:2)

K-Tree

40

The K-tree is the hierarchical name space containing all global variables created in
a K session. The initial state of the K-tree when K is started is a working directory
whose absolute path name.is together with a set of other top-level directories
containing various utilities. The working directory is for interactive use and is the



default active, or current, directory. Each application should define its own top-
level directory that serves as its logical root, using a name which will not conflict
with any other top-level application or utility directories present. Every subdirectory

in the K-tree is a dictionary that can be accessed like any other variable, simply by
its name. The root directory has no name, but can be accessed by the expression
.~ (“dot back-quote”).

Left-Atomic Function

A left-atomic function f is a dyad f that is atomic in its left, or first, argument. That
is, for every valid right argument y, the monad ; v is atomic.

List

A list is one of the two fundamental data types, the other being the atom. The
components of a list are called items (see Item). See Nouns in the chapter Syntax.

Matrix

A matrix is a rectangular list of depth 2. An integer matrix is one whose atoms are
all integer atoms. Similarly for character matrix, floating-point matrix, and symbol
matrix.

Monad
A monad, or monadic function, has one argument.
Nil

Nil is the value of an unspecified item in a list formed with parentheses and semi-
colons. For example, nilis the item at index position 2102 ; "abc"; ; "xyz).

Nil is an atom; its value isn , or * (). Nils have special meaning in the right
argument of the primitive function Index and in the bracket form of function appli-
cation.

K Reference Manual 3: Terminology 41



Nilad

A nilad, or niladic function, has no arguments.

Numeric List

A numeric list is one whose atoms are either integers or floating-point numbers.
For example, the arguments to Plus and Times are numeric lists.

Numeric Vector

A numeric vector is a list that is either an integer vector or a floating-point vector.

Primitive Function

A primitive function is either the dyad or monad of a simple verb, where a simple
verb is one of the symbols, -, * , %, | ,&,",<,>,=,! ,#, ,~,$,?,@,
.and, .

Rank

The rank of x is the number of items in its shape, nathely. The rank of an atom

is always 0, and that of a list is always 1 or more. If the rank of a list is n, then the
list must be rectangular to depth n. The rank of a matrix is 2. The rank of a dictio-
nary d is defined to be~d[].

Rectangular List

A list of depth 2 is said to krectangular if all its items are lists of the same count.
For example:

(1 2 3; "abce"; 'x "y "z; 5.4 1.2 -3.56)

is a rectangular list. The shape of a rectangular list of depth 2 has two items, the
first being the count of the list and the second the count of any item.

A~ (12 3; "abe"; "x 'y "z; 5.4 1.2 -3.56)
4 3

42



Analogously, a list of depth 3 is rectangular if all items have depth 2 and all items
of items are lists of the same count. The shape of a rectangular list of depth 3 has
three items, the first being the count of the list, the second the count of any item,
and the third the count of any item of any item. For example:

((L 2; "a "b; "AB"); ("CD"; 3 4; "c d))
is a rectangular list of depth 3 and its shape is:

A ((1 2; "a “b; "AB"™); ("CD"; 3 4; ‘c d))
2 32

Rectangular lists of any depth can be defined.

It is possible for a list of depth d to bectangular to depth nwhere n is less than
d. For example, the following list is of depth 3 and is rectangular to depth 2:

((0 1 2; “a; "AB"); ("CD"; 3 4; "c ~d))

This list has two items, each of which has three items, but the next level of items
vary in count. The shape of this list has only two items, the first being the count of
the list and the second the count of any item:

~ (01 2; “a; "AB"); ("CD"; 3 4; "c 'd))
2 3

The list x is rectangular to depth n if its shape has n items, that is if n ¢quals

Right-Atomic Function

A right-atomic function f is a dyad that is atomic in its right, or second, argument.
That is, for every valid left argument x, the monadic functios; ] is an atom
function (see Fixing Function Arguments in the chapter Functions).

Script

A script file, orscript for short, is a source file for an application or utility. It is a

text file of function definitions and statements for execution, possibly including
commands to load other scripts or operating system commands (see Load and OS
Command in the chapter Commands ). The typical way to start an application is to
give the name of its start-up script in the command that starts the K process.

K Reference Manual 3: Terminology 43



Simple List
A simple list is a list whose items are all atoms, i.e. a list of depth 1 (see Depth).

The atoms need not be of the same type.

Simple Vector

A simple vector is a list which is either a character vector, floating-point vector,
integer vector, or symbol vector. See also Vector Notation.

String

See Character String.

String-Atomic Function

A string-atomic function f is like an atom function, except that the recursion stops
at strings rather than their individual atomic characters.

String Vector

A string vector is a list whose items are all character strings.

Symbol

A symbol is an atom which holds a string of characters, much as an integer holds a
string of digits. For example.abc denotes a symbol atom. This method of form-

ing symbols can only be used when the characters are those that can appear in
names. To form symbols containing other characters, put the contents between
double quotes, as in"abc-345" .

A symbol is an atom, and as such has count 1; its count is not related to the number
of characters that appear in its display. The individual characters in a symbol are
not directly accessible, but symbols can be sorted and compared with other sym-
bols. Symbols are analogous to integers and floating-point numbers, in that they
are atoms but their displays may require more than one character. (If they are needed,
the characters in a symbol can be accessed by converting it to a character string.)

44



Symbol Vector

A symbol vector is a simple list whose items are all symbols. When displayed in a
K session, it appears as a string of symbols separated by blanks, as in:

‘a b x y.z "123"

not as individual symbols separated by semicolons and surrounded by parentheses
(that is, not in list notation). The empty symbol vector is denoted.

Trigger

A trigger is an expression associated with a global variable that is executed imme-
diately whenever the value of the variable is set or modified. The purpose of a
trigger is to have side effects, such as setting the value of another global variable.
For example, suppose that whenever the value of the global variable x changes, the
new value is to be sent to another K process where it is to become the new value of
the Oth item of the variable b. This trigger is set simply by placing the expression
on the appropriate node of the K-tree:

Xx..t: "pid 3: ("b; 0; :; x)"

wherepid is the identifier of the other process. Note that relative referents like b
are not resolved in the attribute dictionary of x, but are entries in the same directory
as Xx.

Valence

The valence of a function is the number of its arguments. For example, the valence
of a tetrad is 4, of a triad 3, of a dyad 2, of a monad 1, and of a nilad 0. A function
called with the wrong number of arguments will cause a Valence Error to be re-
ported.

Vector
A list whose items are all of the same type is called a vector of that type. Thus we

have integer vectors, floating-point vectors, character vectors, symbol vectors, and
string vectors.

K Reference Manual 3: Terminology 45



Vector Notation

46

An integer or floating-point vector constant can be defined by putting the atoms
next to one another with at least one space between each atom. For example, for
the integer vectort. -2 3:

# 1 -2 3 a vector with 3 items
3

1 -2 3[1)] item 1 of the vector
-2

# 3 4 5.721 1.023e10 a vector with 4 items
4

Note that only one item of a floating-point vector defined by vector notation has to
be given in decimal or exponential notation. The other items, if whole numbers,
can be given in integer format, such as the items 3 and 4 in the above floating-point
vector. For examplel 2 3.0 4 is a floating-point vector, while 2 3 4 is

an integer vector.

Characters appear between double-quote marks for string vectors. Items in symbol
vectors need not be delimited by spaces, since the back-quote character serves to
distinguish them.

‘one two three #"Kx Systems"
‘one "two “three 10

One-item vectors employ the comma in their notation, as in:
,"a” , abc ,3.14159265

Empty vectors are denoted b8, 0#0.0, "" and0+# * for integer, floating-point,
string and symbol vectors, respectively.



CHAPTER 4

VERBS

Amend ltem
@[rd; i; £; y]
@rd; i; :; vyl
@[rd; i; f]

Description

Modify the items of the list d at indices i with f and, if present, the atom or list y,
and similarly for the dictionary d at entries i.

Arguments

The first argument d is either a symbol atom, dictionary, or any list, and the second
argument i is either nonnegative integer or symbolic. The third argument f is any
monadic or dyadic function; the first of the above expressions corresponds to dy-
adic f and the third to monadic f. The argument y, if present, is any atom or list for
which i and y are conformable, and where items-at-depth in y corresponding to
atoms in i must be valid right arguments of f.

Definition

If the first argument is a symbol atom then it must be a handle, and the definition
proceeds as if the value of the global variable named in the symbol is used as the
first argument (but see Handle in the chapter Terminology). In addition, the modi-
fied value becomes the new value of the global variable, and the symbol is the
result. The first argument is assumed to be a dictionary or list for the remainder of
this definition.

K Reference Manual 47



48

The description that follows starts with the case of dyadic f. The second of the
above expressions can be viewed as a special case of the first expression, where the
dyadic function represented by the colon simply returns its right argument, i.e.
{[x;y] v}.The purpose of the first expression is to modify items of d selected

by i with values of f applied to those items as left argument and items-at-depth in y
as right argument. The second expression simply replaces those items with items-
at-depth in y. The third expression, where there is no y and f is monadic, replaces
each of those items with the values of f applied to it.

In the case of a left argument list d, Amend Item permits modification of one or
more items of that list by a function f and, when f is dyadic, items-at-depth iny. The
result is a copy of d with those modifications. For example:

d:9 876543210

i:2 7 1 2

y:5 3 6 7

@rd; i; +;
9 14 19 6 54 3570

+ N @

8
4
y]

This result is developed as follows. Starting at index O of i, #gm[0]] is
replaced withd[1 [0] ]+y[0],i.e. d[2] becomes7+5,0r12. Thend[i[1]]
is replaced withd [1 [1]]+y[1], l.e.d[7] becomeg+3, or 5. Continuing in
this manner,d[1] becomess+6, or 14, d[8] becomes. +2, or 3, d[2] be-
comesl2+7, or 19 (modifying the previously modified value 12), angs] be-
comes 3+4, or 7 (modifying the previously modified value 3).

In general, i can be any atom or list whose atoms are valid indices of d, i.e. from the
list ! #d, and i and y must be conformable. However, the function is not an atom
function. Instead, the function proceeds recursively through i and y as if they were
the arguments of a dyadic atom function, but whenever an atom of i is encountered,
say k, the current value af [ k] isreplaced byf [d [k]; z], where z is the item-
at-depth in y that was arrived at the same time as k. The result is the modified list.
For example:

d: 9 8 7
i: (0; (1;2 2))
y: ("abc"

((1.5; “xyz)

(100; (3.76; “efgh))))



Before evaluating Amend Item for this data, compare the structures of i and y to
see thatthe O inigoes withabc" iny, the 1 inigoeswithi1.5; “xyz) iny, the

first 2 of 2 2 in i goes with 100 in y, and the second 220f2 in i goes with
(3.76; “efgh) iny. Now:

@[d; i; ,; v fis Join
( (9; "a",’"b",’"C") JOIn 9 andvabcn
(8;1.5; "xyz) Join8and(1.5; "xyz)

(7;100;3.76; "efgh)) Join 7 and 100, then join with3.76; “efgh)

The general case ot [d; i; £; y]

The general case of Amend Item for dyadic f can be defined recursively as follows,
based on the definition for an atom second argument:

AmendItem: {[d;i;f;y] :[ @ i; Q[d; i; £f; V]
AmendItem/[d; i; £; v111}

Note the application of Over to AmendIltem, which requires that whenever i is not
an atom, either y is an atomipor equalsty. Over is used to accumulate all changes
in the first argument d.

ThecaseofR[d; i; :; y]

The second case simply replaces the items of d with items-at-depth in y. In effect,
the dyadic case for the function that simply returns its right argument as its result,
i.e. {[x;y] y}. Forexample:

d:9 8 76 543210
i:2 71 8 2 8
y:50 30 60 20 70 40
@[d;i;:;y]

9 60 70 6 5 4 3 30 40 O

This result is developed as follows. Starting at index O of i, #lgm[0] ] is
replaced withy [0], i.e.d[2] becomes 50. Thed[i[1]] is replaced with
y[1],i.e. d[7] becomes 30. Continuing in this manrer]l ] becomes 6@ [ 8]
becomes 204 [2] becomes 70 (overwriting the previous change to 50)ddr&d
becomes 40 (overwriting the previous change to 20).

K Reference Manual 4: \Verbs 49



The caseofR[d; i; f]

50

The third case of Amend Item, for a monad f, is similar to the case for dyadic f, but
simpler. As the function proceeds recursively through i, whenever an atom of i is
encountered, say k, the current valueddfk] is replaced byf [d[k]]. The re-

sult is the modified list. As in the dyadic case, if an index k of d appears more than
once in i, thend [k] will be modified more than once.

Facts About Amend Item

If an index of d appears more than once in i, then that item of d will be modified
more than once. The above definition in terms of Over gives the correct order in
which the replacements are made.

The function f is applied separately for each atom in i.

The cases of Amend Item with a function f are sometimes called Accumulate Item
because the new items-at-depth are computed in terms of the old, as in
@[x;2 6;+;1],where items 2 and 6 are incremented by 1.

Error Reports

Domain Error if the symbol d is not a handle, i.e. does not hold the name of an
existing global variable.

Index Error if any atom of the right argument is not a valid index of the left argu-
ment.

Length Error if the second argument i and the last argument y are not conformable.
Rank Error if the object being modified is a non-dictionary atom.

Type Error if any atom of i is not an integer, symbol or nil.



Amend
L[d; 1 £5 vl
C[dr iy vl
L[d; 1 £

Description

Modify the items-at-depth in list d at indices i with f and, if present, the atom or list
y, and similarly for items-at-depth at indiceés 1 in the dictionary entriesi .

Arguments

The first argument d is either a dictionary, symbol atom, or any list. Each atom of
the second argument i is either nonnegative integer or symbolic. The special case
of an atom d other than a dictionary or symbol together with the empty list i is
permitted. The relationships between d and i are the same as for Index.

The third argument f is any monad or dyad; the first of the above expressions cor-
responds to dyadic f and the third to monadic f. The argument vy, if present, is any
atom or list; i and y must be conformable in a sense described below, and items-at-
depth in y corresponding to paths in i must be valid right arguments of f.

Definition
In the case of a left argument list d, Amend modifies one or more items-at-depth in
that list by a function f. The result is a copy of d with those modifications.

If the left argument is a symbol atom then it must be a handle, and the definition
proceeds as if the value of the global variable named in the symbol is used as the
left argument (but see Handle in the chapter Terminology). In addition, the modi-
fied value becomes the new value of the global variable named in the handle, and
the symbol is the Amend result.

If i is a nonnegative integer atom then the ith item of d is amended. If i is a symbol
atom then d must be a dictionary or handle of a directory and the ith entry is amended.
If d is an atom other than a dictionary or symbol then i must be the empty list, and
d is amended. If d is a list and i is nil then all of d is amended, but one item at a
time, as if i was! #d.

The remainder of this section assumes that both d and i are non-empty lists. It is
also assumed that the reader is familiar with the definition of Index.

K Reference Manual 4: \Verbs 51



The description that follows starts with the case of dyadic f. The expression above
with the colon in third position can be viewed as a special case of the first expres-
sion, where the dyadic function represented by the colon simply returns its right
argument, as i [x;y] y}. The items-at-depth in d that are to be replaced are
selected by i just like in Index, i.el. i . For monadic f, each selected item-at-
depth is replaced by the result of f applied to that item. If y is present the selection
proceeds as before, but with. i and y together, as if they were the arguments of

a dyadic atomic function. When the selection of an item-at-depth in d is about to be
made, we have also arrived at an item-of-depth in y. In the expression above with
the colon, the item-at-depth in d is simply replaced by that item-at-depth in y. In the
case of dyadic f, the item-at-depth in d is replaced by the result of applying f with
the item-at-depth in d as the left argument and the item-at-depth in y as the right
argument.

The case where i is a non-negative integer vector (a single path)

If the second argument i is a nonnegative integer vector then a single item at depth
#1 in dis replaced. For example:

(5 2.14; "abc") . 1 2 Index to select c"
" selected item-at-depth
L[(5 2.14; "abc"); 1 2; ,; "xyz"] append'xyz"to"c"
(5 2.14 the result is the amended list
("a"
l|bl|
"exyz")) amended item-at-depth

The case where the items of i are non-negative integer vectors

The following is an example of cross-sectional amending, and can be reduced to a
series of single path amends like the first case above:

d: ((1 2 3; 4 5 6 7)

(8 9; 10, 11 12)

(13 14; 15 16 17 18; 19 20))
i:(2 0; 0 1 0)
y: (100 200 300; 400 500 600)
r:.[d; 1; ,; VY]

The following display of d adjacent to r provides easy comparison:

52



d r

((L 2 3 ((1 2 3 400 o600
4 5 6 7) 4 5 6 7 500)

(8 9 (8 9
10 10
11 12) 11 12)

(13 14 (13 14 100 300
15 16 17 18 15 16 17 18 200
19 20)) 19 20))

The shape of y i 3, the same shape as the cross-section selected byi .
The (7; k) thitem of y corresponds tothe path[0;5];i[1;k]). The first
single path Amend is equivalent to:

d: .[d; (¢ . 00; 1 . 10); ,; v . 0 0]

(since the amends are being done individually, and the assignment serves to cap-
ture the individual results as we go), or:

d: .[d; 2 0; ,; 100]

anditemd . 2 0 becomed 3 14,100,0r13 14 100. The next single path
Amend is:

d: .[d; (i . 00; 1 .1 1); ,; v . 0 1]
or

d: .[d; 2 1; ,; 200]

and itemd . 2 1 becomesl5 16 17 18 200. Continuing in this manner,
item d . 2 0 becomesi3 14 100 300 (modifying the previously modified
value13 14 100);item 4 . 0 0 becomesl 2 3 400; itemd . 0 1 be-

comes4 5 6 7 500; and, finally, itemd . 0 0 becomesl 2 3 400 600

(modifying the previously modified value 2 3 400).

The case of. [d; i; :; y]

The second case of Amend, where the colon appears in place of the dyadic function
f, simply replaces the items-at-depth in d with items-at-depth in y. Repeating the
earlier example with colon in place of Join:

K Reference Manual 4: \Verbs 53



d: ( 2 3; 45 6 7)
9; 10; 11 12)
3 14; 15 16 17 18; 19 20))
:(2 0; 01 0)
: (100 200 300; 400 500 600)

sold; 1o vl

(1
(8
(1

Ko< b

The following display of d next to r provides easy comparison:

d r
((1 2 3 ((600 replaced twice
45 6 7) 500) replaced once
(8 9 (8 9
10 10
11 12) 11 12)
(13 14 (300 replaced twice
15 16 17 18 200 replaced once
19 20)) 19 20))

Note that there are multiple replacements of some items-at-depth in d, correspond-
ing to the multiple updates in the earlier example.

The case of. [d; i; £]

The third case of Amend, for a monadic function f, replaces the items-at-depth in d

with the results of applying f to them. Repeating the earlier example with Negate in
place of Join:

d: ( 2 3; 45 6 7)

9; 10; 11 12)

3 14; 15 16 17 18; 19 20))
:(2 0; 01 0)

: (100 200 300; 400 500 600)
L0d; i, -1 ]

(1
(8
(1

Ko< b

The following display of d next to r provides easy comparison:

54



d r
((1 2 3 ((L 2 3 negated twice
45 6 7) -4 -5 -6 -7) negated once
(8 9 (8 9
10 10
11 12) 11 12)
(13 14 (13 14 negated twice
15 16 17 18 -15 -16 -17 -18 negated once
19 20)) 19 20))

Note that there are multiple applications of f to some items-at-depth in d, corre-
sponding to the multiple updates in the first example.

The general case

In general, the argument i can be any atom that is a valid index of d, i.e.!oh& of

or a list representing paths to items at dejthn d. The function proceeds recur-
sively throughi [0] andy as if they were the arguments of a dyadic atom function,
except that when arriving at an atoniip0 ], that value is retained as the first item

in a path and the recursion continues on with ] and the item-at-depth in y that

had been arrived at the same time as the ataniGn . And so on until arriving at

an atom in the last item of i. At that point a path p into d has been created and the
item at depth# i selected by p, namely . p, is replaced by [d . p;z] for

dyadic forf[d . p] for monadic f, where z is the item-at-depth in y that had
been arrived at the same time as the atom in the last item of i.

The general case for dyadic f can be defined recursively by partitioning the index
list into its first item and the rest:

Amend:{[d;F;R;f;y] :[ n ~ F; Amend[d; !#d; R; £f; y]
O =4# R; Q[d; F; £; y]
@ F; Amend[d @ F; *R; 1 R; f; y]

Amend[;; R;;1/[d; F; £; vI}

Note the application of Over to Amend, which requires that whenever F is not an
atom, either y is an atom éF equalsf#y. Over is used to accumulate all changes
in the first argument d.

K Reference Manual 4: \erbs 55



56

Facts About Amend

In the general case of aone-itemlist[,d; i; £; y] isidenticalto@ [d; *i; £; y]
and . [d;i;f] isidentical to@[d; *i; f].

In the case of a non-empty index list i, the function f is applied once for every path
generated from i, just as the above definition indicates. However, if the index i is
the empty list, i.e(), then Amend is “Amend Entire”. That is, the entire value in

d is replaced, in the first cas€d; () ; £;y] with £[d; y], in the second case
.[d; ();:;y] withy, asind: y, and in the third case[d; () ; £] with £[d].

For example:

2 3; 07 4,7 4 5 6]
23456

On the other hand, if i is the enlist of nil, then according to the above definition
Amend is “Amend Each”. That s, every item of d is modified by separate applica-
tions of f in the first and third cases of Amend, and by the corresponding items of y
in the second case. For example:

.[2 3; , n; ,; 4 5]
(2 4
3 5)

The cases of Amend with a function f are sometimes called Accumulate because
the new items-at-depth are computed in terms of the old,.dxin 2 6; +; 117,
where item 6 of item 2 is incremented by 1.

Error Reports

Domain Error if the symbol d is not a handle, i.e. does not hold the name of an
existing global variable.

Index Error if any path in the index list i is not a valid path of the first argument.

Length Error in the cases of dyadic f and : if i and y are not conformable as de-
scribed above.

Type Error if any atom of i is not an integer or symbol or nil.



Apply (Monadic)
f @ x
Arguments
The left argument f is any monadic function or atom symbol holding the global
name of a monadic function, and the right argument is any argument of f.
Definition
Apply (Monadic) applies the function f to the argument x. For example:

{x~21@es3
9.0

If f is a symbol atom then it must hold the name of a global variable whose value is
a monadic function, and that function is applied.

Error Trap (Monadic)

Error Trap (Monadic) is denoted [f; x; :] and defined in the same way as
Error Trap under Apply.

Facts about Apply (Monadic)
f@x isidenticaltof . ,x.

Error Reports

Type Error if the symbol d is not a handle, i.e. does not hold the name of an existing
global variable whose value is a monadic function.

Valence Error if f is niladic.

K Reference Manual 4: \erbs 57



Apply

f . x

Arguments

The left argument f is any function or atom symbol holding the name of a function,
and the right argument x is an argument list of f.

Definition

Apply applies the left argument function f to the argument list x. If f has 1 argu-
ment then x has 1 item and f is applied to the argumént] . If f has 2 argu-
ments then x has 2 items and f is applied to the first argusngtt and the sec-

ond argumentx [ 1], and so on. If the left argument is a symbol atom then it must

hold the name of a function, such ‘ag and that function — g in this example — is
applied to the argument list.

Assume f is a function, not a symbol. In terms of the bracket-semicolon notation
for function application (see Apply in the chapter Amend, Index, Apply and As-
sign), £ . x isidentical to:

fix[0]; x[1]; ..; x[-1+#x]]
for functions with valence at least 2, and
f[x[0]]
for monadic functions. See below for niladic functions.

If fis a symbol atom then it must hold the name of a global variable whose value is
a function, and that function is applied.

Niladic Functions

58

Niladic functions are handled differently. The pattern above suggests that the empty
list () is argument list to niladic f, but . () is a case of Index, and the result

is simply f. Niladic Apply is denoted by . , n, i.e.the right argument is the
enlisted nil. For example:

a: 2 3

b: 10 20

{a + b} ., n
12 23



Error Trap

When debugging an application it is helpful for execution to be suspended when an
error in a function occurs so that the problem can be analyzed (see the chapter
Controls and Debugging for discussions of suspended execution). However, in a
production application, rather than suspending execution, it is often preferable to
log the error and either continue on or exit the application, whichever is appropri-
ate. This behavior can be obtained with a variant of Apply known as Error Trap.

For a function of arbitrary valence, Error Trap is denoted b§y; x; :] and
always produces atwo-item list. ff . x evaluates successfully thenf; x; :]

is identical to(0; £ . x), i.e. O indicating success followed by the result of
applying f to x. However, if the evaluation @f . x failsthen. [f; x; :] s
(1;"text"),i.e.1lindicating failure followed by a character vector holding the
text of the error message that would ordinarily be displayed in the session log. For
example:

;07 ¢
(1;"valence")

Facts About Apply
If fis a monadic function, thesi . , y isidenticaltof@y ,i.e. Apply (Monadic).

Error Reports

Type Error if the symbol d is not a handle, i.e. does not hold the name of an existing
global variable whose value is a function.

Valence Error if the count of x is greater than the valence of f.

K Reference Manual 4: \Verbs 59



Atom

60

@ x

Argument

Any atom or list.
Definition

Atom applies to any atom or list, returning 1 if the object is an atom, and O if the
object is a list.

@1
1
@23 this is a 2-item vector
0
@ "z"
1
@™ this is the empty character vector
0
@ {x+vy} functions are atomic
1
@ (+;-) this is a 2-item function list
0
@ “symbol
1
@ .(("az2); ("b;3)) thisis adictionary with 2 entriesa and b
1
@ n nil is an atom
1



Count
# x

Argument

Any atom or list.

Definition

Count yields the number of items in a list argument. The result is 1 for an atom.

# 31 4 2
4

ms: (8 1 6;3 7;4 9 2)

# ms
3

# "A" "A" is a character atom
1

# ,"A" a list with one item
1

# "count" another character vector
5

K Reference Manual 4: \Verbs 61



Divide

62

o)

X %5 Yy
Arguments

The arguments x and y are conformable numeric atoms or lists.

Definition

Divide is an atom function that produces x divided by y for atoms x and y. Integer
atoms are treated like floating-point atoms, and the result is always floating-point.

There is one difference from the common mathematical definitiot:is defined
to be 0.0.

The result is 0.0 if the mathematical result would be too small in magnitude to be
represented as a floating-point number. The result could al$b be-01, mean-
ing plus or minus infinity respectively, in the appropriate cases.

Error Reports
Length Error if the arguments are not conformable.

Type Error if either argument is not numeric.



Drop / Cut
X _y

Arguments

The left argument is an integer atom in the case of Drop or an integer vector in the
case of Cut. The right argument is an atom or list for Drop, or a list for Cut.
Definition

Drop is the case ofx y where x is an integer atom. The resultof v isto

drop the first x items of y if x is positive, or the last items of y if x is negative.

1 "stares" -2 _ "stares"
"tares" "star"

If y is an empty list or an atom, Drop is an identity function. If x is not less than the
count of y, the result is the appropriate empty list.

0 7 88 " 9 16

7 mww !O

Cut is the case ok y Where x is an integer vector. The items of x must be

indices to items of list y, in non-descending order. The effeckof vy is to
partition y into sub-lists beginning at indices x.

03 012345 a:"try to cut into words"
(01 2 m: & a="1"
3 4 5) m

04 012345 3 6 10 15
(001 2 3 (O,m) a
4 5) ("try"

0 4  "seashells" " to"
("seas" " cut"
"hells") " into")

" words")

Duplicates in x result in empty lists among the items of the result:

K Reference Manual 4: \Verbs 63



64

113 _ 1!6
(10

12

3 4 5)

The result always has the same number of items as the left argument.

Error Reports

Domain Error if the left argument is an integer vector but not in non-descending
order, or it contains any negative integers.

Int Error if the left argument is not an integer atom or vector, or if the left argument
is a vector and the right is an atom.

Length Error if the left argument is a vector containing invalid indices.



Enlist

, X

Argument

Any atom or list x.
Definition

Enlist creates a one-item list containing X. The countsofs always 1, the first
item of , x is identical to x, and the shape,of is 1 followed by the shape of x.

Xx: 1 2 3
~ox the shape of x
;3
v: , X
Ny the shape of, x
13 1 followed by the shape of x
X ~ * y Does x match the First of x ?
1 Yes.

K Reference Manual 4: \Verbs 65



Enumerate

66

! x
Argument
Nonnegative integer atom, symbol atom, character atom or string, or dictionary X.

Definition

For a nonnegative integer atom x, Enumerate produces a list of the x integers from
0 throughx-1 in increasing order.

! 10

' # (1 2; "abc"; “xwz)
012345567829 012

These integers are indices into lists of length x. For example:

list: "abcdefghij"
# list
10
list[!10]
"abcdefghij"

If a symbol x is the handle of a directory on the K-tree, thenis a symbol vector
whose items are the entries in that directory. The result is nil for any other symbol
argument. Similarly for a dictionary x, the items of the symbol vettorare the
entries in X.

The case of a character atom or string x is analogous to the symbol atom case. If x
holds the name of a directory in the host operating system,!thes a string

vector whose entries hold the names of the entries in that directory. The result s nil
for any other character atom or string argument.

Error Reports

Domain Error if x is not a nonnegative integer atom, symbol atom, dictionary or
character string.



Equal
X =y

Arguments

The arguments x and y are conformable atoms or lists. When both are atoms they
must both be numeric, or both characters, or both symbols.

Definition
Equal is an atom function, and for atoms x and y, the restikofis:

» 1if x and y are numeric, and x is equal to y in the usual mathematical sense,
and 0 otherwise;

* 1if x and y are the same character, and O otherwise;

» 1if x and y are the same symbol, and 0 otherwise.

3 =23 "cat" = "rat"
1 011

3 = -3 “abc = “abcdefg
0 0

Comparison tolerance is used when both x and y are numeric and at least one is
floating-point. That is,x=y is 1 if x and y are close in value, even if they are
actually distinct.

3.0 = 3.1
0

3.0 = 3.000000000001
0

3.0 = 3.0000000000001
1

Error Reports
Length Error if the arguments are not conformable.

Type Error if applied to atoms that are not both numeric, or both characters, or both
symbols.

K Reference Manual 4: \erbs 67



Find

68

d? vy
Arguments

The left argument d can be any list or nil, and the right argument y can be any atom
or list.

Definition
If y occurs among the items of d thény is the smallest index of all occurrences.

Otherwise,d?y is #d (the smallest nonnegative integer that is not a valid index
of d). When d is nil, the result is y.

987 6543727
2 7 is found
987 6543721
7 1 is not found
ms: (8 1 6 ; "abcdef" ; 4 9 2 ; 'x 'y "z "w; 4 9 2)
ms ? 4 9 2
2 the first 4 9 2 is found
words: ("canoe"
"Eug"
"raft"
"rowboat"
"ark"
"liner")
words ? "raft"
2 "raft"™ is found
words ? "submarine"
6 "submarine™ is not found

Find uses Match for comparing items of d and y, and therefore comparisons of
numeric objects when at least one is floating-point are based on comparison toler-
ance.

Error Reports

Domain Error if d is atomic.



First
*ox
Argument
Any list or atom x.
Definition
The result of First is the first item of list x, or x itself if x is an atom..

* "abc"
wan
* ("abc"; "defg"; "hijkl")
"abc"
* ,, par
, pAr
* pgr
‘par

First is also defined for empty vectors and the empty list. For each of the empty
vectors, the result is a suitable prototype for the left argument of Form:

*10 *0#0.0 *Ofm"" *0#°
O 0.0 " " N
*()
(the result of *() is nil)

The last item of a list is obtained by the K idiom x called “First Reverse”, as
in:

* | ("abC"; "defg"; "hijkl")
"hij k1"

K Reference Manual 4: \Verbs 69



Flip
+ x
Arguments
Any list for which all its list items have the same count, or any atom.
Definition
Flip applies to a list having a shape of length two or more, and interchanges the top
two levels of the list. Mathematically speaking, flip is matrix transpose. If the top

two levels of x have shape p and g, the top two levels-ot will have shape g
and p.

m: 3 4 # ! 12

m + m
(01 2 3 (0 4 8
4 5 6 7 159
8 9 10 11) 2 6 10
3 7 11)
~m ~ 4+ m
34 4 3
k: ((0O 1 2;3);((4 5;6 7 8 9); (10 11;12))
k + k
((0 1 2 item (0;0) ((0 1 2 item (0;0)
3) item (0;1) 4 5 item (0;1)
(4 5 item (1;0) 10 11) item (0;2)
6 7 8 9) item (1;1) (3 item (1;0)
(10 11 item (2;0) 6 7 8 9 item (1;1)
12)) item (2;1) 12)) item (1;2)
N~k ~ 4+ k
32 2 3

Atoms are permitted among the items of x, so long as all list items have the same
count. The result is as if each atom was first replicated n times, where n is the count

of list items.
a: (1 2 3 b: (1 2 3
"C" "CCC"
X 'y z) ‘X 'y z)

70



+ a + b

((L;"C"; x) ((1;"C"; x)
(2;ncn;\y) (2’.||Cn’.\y)
(3;"C"; z)) (3;"C"; z))

Flip is an identity function for atoms:

+ Tabc + 07 +{x*vy}
“abc 67 {x*y}

If all items of x are atoms then x is identical to x.
+ "a'b'c’d
'a b ¢ 'd
Error Reports
Length Error if the counts of the list items are not all equal.

K Reference Manual 4:\Verbs 71



Floor

72

X

Argument The argument is any numeric atom or list.

Definition

Floor is an atom function. Its definition depends on the greatest and least represent-
able integers for the computer on which K is running. For those computers with 32-
bit integers, these values are:

G: 2147483647 e, -1+2731
S:-2147483648 e, - 2731

Floor is defined for all numeric values which are greater than or equal to S, and less
than G. The value of x for such a numeric atom x is the largest representable
integer that is not greater than x. For example:

4.6 _ -4.6
4 -5
Comparison tolerance is used when floating-point arguments are near integer val-
ues. Namely, if a floating-point argument that is tolerantly equal to but actually less
than an integer, then its floor is that integer, not that integer Minus 1. In the follow-
ing, the decimal number in the first row is not tolerantly equal to 2, but the one in
the second row is:

2 1.999999999999 ~1.999999999999
0 1

1.9999999999999 1.9999999999999

1 2

N
I

Compare this primitive function with the system functionloor, whose result
is also the integer part of its argument, but as a floating-point number and without
using comparison tolerance.

Error Reports

Domain Error if a numeric argument is either less than the least representable inte-
ger or greater than or equal to the greatest representable integer.

Type Error if the argument is not numeric.



Format
S x

Arguments
Any atom or list.

Definition

Format is an atom function. The result is like X, except that every atom in x is
replaced with its character vector representation. For example:

$ 0976
(,"o"

A

P

P "eM)

$ m1234"
"1234"

S {[x;y] xty}
"{Ix;y] xty}"
$ 1.2e-34

"1.2e-34"

The results for floating-point numbers depend on the print precision setting (see
Print Precision in the chapter Commands).

\p 4 set print precision
S 1.2345678
"1.235" only 4 digits in the result
\p 6
S 1.2345678
"1.23457" now there are 6 digits in the result
\p 10
S 1.2345678
"1.2345678" now there are 8 digits (no padding to 10)

K Reference Manual 4: \Verbs 73



Format (Dyadic)

x Sy

Arguments

The arguments are conformable atoms and lists; the left argument is numeric and
the right argument consists of integers, floating-point numbers, and symbols.
Definition

Format is an atom function, whose result for an atom left argument and an atom
right argument is always a character vector.

Integer left argument

The right argument may be integer, floating-point, symbol, or string. The effect is
as follows: Applys to the atom y (see Format) to produce an intermediate result t.
Then if the integer x is positive, start at the right-most character in t and, moving to
the left, select x characters from t. If x is greater tharselect all of t and append

to the left withx-#t blanks. For example:

2 S 2.345 7 $ “abcd
nagm " abcd"

If X is negative, start at the left-most character of t and move to the right, appending
with blanks on the right if necessary.

Floating-point left argument

74

The right argument must be numeric, i.e. either integer or floating-point. Let n be
the first decimal digit in x, e.g. nis 2 if x is 5.27. Apply to the atom y (see
Format) to produce an intermediate result t. If t has more than n decimal digits, it
is rounded to n decimal digits. If it has fewer, say m, thenzeros are appended

to the right. If y is an integer then a decimal point and n zeros are appended to the
right. Finally, use the integer portion of x to select from or extend this intermediate
result in the same manner as the integer left argument case. For example:

7.2 S 2.345 7.2 $ 714
" 2.35" " 714.00"

Negative x, in addition to causing selection from left to right and padding on the
right, specifies exponential format. For example:



-9.2 § 2.345 -9.2 § 714
"2.35e+00 " "7.14e+02 "

Error Reports
Domain Error when an atom left argument and atom right argument are not one of
the combinations listed in the definition, except for the type error case below.

Length Error if the arguments are not conformable.
Type Error in Format for a floating-point left argument and symbol right argument.

K Reference Manual 4: \Verbs 75



Form

76

x Sy

Arguments

The arguments are conformable atoms and lists. Any atom in the left argument
must be one of the five prototypes0.0, *, "™ ", and{}. The right argument is

a character atom or list.

Definition

Form converts from character type to K data types. The left argument specifies the
K type of the result, while the value of the result comes from the right argument.

When the left argument is an atom it must be one of the five K prototypes given
above. The definition of Form for these five cases are as follows:

The right argument consists of a sequence of characters that form a valid
integer representation. The result is that integer. For exanple, 7"

Case Definition of x$ vy
0

is 27.
0.0

{1

The right argument contains a sequence of characters that form a valid
integer or floating-point number representation. The result is that float-
ing-point number. For example,.0$"3.4"is3.4 and0.0s$"27"

is 27.0.

" "Sy equalsy for all character vectors y.

" Sy is the character string with the same contents as the character vec-
tory. For example; $"abc" is “abc.

The right argument is any character vector whose contents are a valid K
expression, and the result of Sy is the result of evaluating that ex-
pression.

Form is like an atom function. However, unlike an atom function, as Form recur-
sively descends through its arguments, it evaluates a resulivbenever it arrives

at an atom t from the left argument and character vector or atom v from the right
argument; it does not continue the descent into a character vector v to evaluate the
results asv [1] for the character atoms in v. For example:



$ " abC"

“abc not "'a b ¢
(0; (0.0; ")) S ("23"; ("23.4"; "abcM))
(23
(23.4; abc))

That is, Form can be defined recursively in terms of an atom left argument and
vector or atom right argument, as follows:

Form:{ if[ (@x) & ~ 1 < depth y; x $ vy
~ 1 < depth y; x Form\: y
x Form' y]}

Error Reports

Domain Error when an atom left argument and a vector right argument are not one
of the combinations listed in the definition.

Length Error if the arguments are not conformable.

K Reference Manual 4: \erbs 77



Function Inverse

78

f 2y
?lE; y; x]

Description

Evaluation of the inverse function of the monadic function f. That is, if X equals
f ? vy, thenyequals @ x.

Arguments

The argument f is a monadic numeric function. The argumenty is a valid result of
the function f, i.e. there is an argument a for which y equats a.

Definition

The system functionsexp and 1log are inverse functions of one another, in that
ify equals exp x thenxequalslog y. Thatis, log y equals( exp) ?y.

For example:

(_exp) ? 2
0.6931472

_log 2
0.6931472

Actually, £?y uses an approximation method and produces a result that is accu-
rate only to within a specified tolerance, which meansthakp) >y and x log y
differ by at most that tolerance.

In the next example, the functidit x does not have an inverse function for all x,
but instead has one inverse function for x less than 0.5, and another for x greater
than 0.5.

f:{(x"2)+(-x)+(-1)}

£f 20
1.618034

f 1.618034 the answer, which should be close to 0
2.5156e-08

The approximation method uses default initial approximations to the result which,
in this example and others like it, has the effect of choosing one of the two or more
inverse functions to be computed. The triadic forpt; y; x] must be used to

compute the other inverse functions. At the least, the initial approximations must



in the range of the particular inverse function of interest, which can be accom-
plished with the triadic form by properly specifying the third argument x. In this
simple example it is enough to choose any value less than 0.5 as the third argument.

For example:

?2[f; 0; 0.25]
-0.618034 another solutiony ofy = £ 0

f -0.618034 a check of the answer, which should be close to 0
2.5156e-08

The triadic form must also be used when the default initial approximation is not
close enough to the result, which can happen for functions with more complicated
graphs than those in the above examples.

The approximation method used in Function Inverse is the secant method, with up
to 20 iterations. The default initial approximations are 0.9999 and 0.9998, which
represent annual spreads of 10 and 20 basis points (0.01%) in financial models
where the result of the function f is a discount rate. The tolerance applied is 1e-6
times the magnitude of the argument y, that is 1/100 of a basis point. For the triadic
case? [f; y; x], theinitial approximations are x and 9999 *x.

In general, the function f should be a monadic atom function with numeric argu-
ments and results, and then bothf; ] and? [f; ; ] are atom functions.

Since? is a primitive verb, in situations where it cannot be determined from con-
text whether it represents a monadic or dyadic function, the dyadic case is assumed.
This assumption is not strict, however. For examplé&,:if then f is dyadic, but

it can also be given three arguments to evaluate the other case of Function Inverse.
The reason that ambivalence is allowed here is that the functionality of the two
cases of Function Inverse is essentially the same.

Error Reports
Limit Error if the result is not produced in 20 iterations.

K Reference Manual 4: \Verbs 79



Grade Down

80

> X

Description
A permutation of! #x that sorts the items of x in non-ascending order.

Argument and Result

The argument x is any list. The result is a nonnegative integer vector with the same
count as X.

Definition
The result of >x is a permutation of #x for which the items ofx [>x] are in
non-ascending order. For example:

>3 14 2
2031 permutation vector

314 2[2 0 3 1]

4 3 21 reordering of3 1 4 2 by the permutation vector

ms : (81 6 ; 357 ; 39 2)

>ms

021 permutation vector

ms[> ms]

(81 6 8 comes before 3

392 the 3’s are a tie, then 9 comes before 5
35 7)

"dozen" [> "dozen"]
"zoned"

When the items of x are distinct they can be rearranged in descending order and
there is only one permutation that will produce this arrangement. However, there
is always more than one when x has duplicate items, because while the indices of
duplicates must be grouped together in the permutation, they can arranged in any
way within the group. For examplexuyus" can be arranged in non-ascending
orderbybotte 0 1 3 4and2 0 3 1 4. The duplicate iteriu" is at indices

1 and 3, which are grouped together in both permutationszam one and 1 in

the other. Theresult of"xuyus" is the first of these two, because the indices of
duplicates in x are always in increasing order



Note that the permutation is the more generally useful result than sorting the argu-
ment directly because it often happens that several lists are to be reordered in the
same way, based on the sort order of one of them.

Any list can be sorted, and for Grade Down the sort order is determined as follows:

1) First sort the items in the order of all atoms first, followed by lists in decreasing
count, as in:

> (1 4 3 2; 1.3 1.2 1.1; 3405; "a "b; "acb")
2 0143

2) Within the group of atomic items, sort in the order: function atom first, then
symbol atom, character atom, floating-point atom, integer atom.

3) Within each group of list items with equal count, sort in the order: general lists,
including lists whose items are all functions, integer vectors, floating-point vec-
tors, character vectors, symbol vectors.

4) Within each atom group of like type defined in 2) other than functions, sort
according to the definitions of Equal and More. The sort order of function atoms is
not described here.

5) Within each vector group of like type defined in 3), sort lexicographically. That
is, first sort a group of vectors of the same type and count by their first items, as
described in 4; then within each group, sort vectors with the same first item by their
second items; and so on.

6) Sort items that are general lists of the same count lexicographically.
Facts About Grade Down
The indices of duplicate items in x are always in increasing ordet.in

Note that a list of characters vectors will not be sorted lexicographically, but first
by the counts of items and then lexicographically within each group of equal counts.
A symbol vector, which can be viewed as a string vector, is sorted lexicographi-
cally. For example:

K Reference Manual 4: \Verbs 81



82

("aaa";"bb";,"
("a"
"aaa"
"o
;")

‘aaa
‘c bbb

“bb
‘aaa

“c[> “aaa "bb

Error Reports

C";"d") [>

("aaa";"bb";’ "

el

Rank Error if the argument is an atom.

C";"d") :|



Grade Up

< x
Description
The permutation of #x that sorts items of the list x in non-descending order.

Argument and Result

The argument x is any list. The result is a nonnegative integer vector with the same
count as X.

Definition

The result ok x is a permutation of #x for which the items ok [<x] are in non-
descending order. For example:

<3142 ms: (8 1 6;3 5 7;4 9 2)
1 302 <ms
314 2[1 3 0 2] 120
1 2 3 4 ms [<ms ]
"taped" [<"taped"] (3 57
"adept" 4 9 2
8 1 6)

See Grade Down for a discussion of duplicate items. Like Grade Down, indices of
duplicate items in the argument x are in increasing order in the result. Also like

Grade Down, any list can be sorted with Grade Up. See Grade Down for a discus-
sion of the general sort order, but note that except for duplicates, the order given
there is the opposite of what it would be here.

Error Reports
Rank Error if the argument is an atom.

K Reference Manual 4: \Verbs 83



Group

84

X
Arguments
Any list x.
Definition

Group produces a list of nonnegative integer vectors whose count is the number of
distinct items in the argument, and:

* in which each item of #x appears once and only once in the result, and;

* i and j are in the same item of the resutt ifi ]| matches<[j] (see
Match);

For example:
=212211
(0 2 3 the indices of 2
1 4 5) the indices of 1
= "weekend"
(,0 the indices of'w" in "weekend"
1 2 4 the indices of'e"
, 3 the indices of' k"
, 5 the indices of'n"
, 6) the indices of'd"

Each item of the result corresponds to a distinct item in the argument, and within
each item the indices are in increasing order. Those distinct items are. the

ith item of=x corresponds to the ith item @k (see Range). For instance, in the
previous example, the second item of the resulg, 4, holds the indices dfe"

in "weekend", and"e" is the second distinct item inveekend".

The argument to Group can be any list, not just vectors. For example:

=(9 2 3

O & O O b
N O 3 DN O
06}



(0 25 items0, 2, and5 equal 9 2 3
1 4 items1 and4 equal 4 5
,3) item3is 6 7 8

Facts about Range
?x isidentical tox@*: '=x (see Range).

Error Reports
Rank Error if the argument is an atom.

K Reference Manual 4: \Verbs 85



Index Item, or At

86

2

d @ 1
Arguments

The left argument d is either a symbol atom, a dictionary, or any list, and the right
argument is either nonnegative integer or symbolic.

Definition
If the left argument is a symbol atom then it must be a handle, and the definition

proceeds as if the value of the global variable named in the symbol is used as the
left argument (but see Handle in the chapter Terminology).

Index Item is a right-atomic function. Every atom in the right argument must be a
valid index of d (one ot #d), or an entry in d for a dictionary d (one af)). The
result is equivalent to replacing each atom of the right argument with the item of
the left argument whose index or entry is that atom. For example:

"abcdefg" @ 4

man
"abcdefg" @ 5 0 3 4 3
"faded"
"abcdefg" @ (5 0; (37,4 3))
("fa" items 5and 0
("da" item 3
,"ed™)) items 4 and 3
(81 6; 35;,7492) @ (21;120)
((7 4 9 2 item 2
3 5) item 1
(3 5 item 1
74 9 2 item 2
8 1 6)) item O

If d is a dictionary then the right argument is composed of the entries of d:

d:.(("a;2 3 4); ("b;"abcdefg"))
de "a
314



d @ b "a
("abcdefg"
2 3 4)

The general case of Index Item can be defined recursively as follows, based on the
definition for an atom right argument:

IndexItem:{[d;i] :[ @ i; d @ 1i; d IndexItem/: 1]}
That is, if i is not an atom then apply Index Item to d and every item of i.

Sinceq is a primitive verb, in situations where it cannot be determined from con-
text whether it represents a monadic or dyadic function, the dyadic case is assumed.
This assumption is not strict, however. For examplé,:it then fis dyadic, but

it can also be given three or four arguments to evaluate Amend Item. The reason
that multi-valence is allowed here is that the functionality of Index Item and Amend
Item is closely related.

Facts about Index Item

d @ i isidenticaltod . ,1i.

Error Reports

Domain Error if the symbol d is not a handle, i.e. does not hold the name of an
existing global variable.

Index Error if any atom of the right argument is not a valid index of the left argu-
ment.

Type Error if any atom of the right argument is not an integer, symbol or nil.

K Reference Manual 4: \erbs 87



Index, or Of
d . i

Arguments

The left argument d is either a dictionary, symbol atom, or any list. Each item of the
right argument is either nonnegative integer or symbolic. The special case of an
atom d other than a dictionary or symbol together with the empty list i is permitted.
Definition

If the left argument is a symbol atom then it must be a handle, and the definition
proceeds as if the value of the global variable named in the symbol is used as the
left argument (but see Handle in the chapter Terminology). If the right argument is
a nonnegative integer atomthen . i istheithitemofd,i.e.equals @ i. If

d is an atom other than a dictionary or symbol then i must be the empty list, and the
result equals d. It is also true that. () equals d for every d. The case of a
dictionary d and a symbol atom i is discussed below in the section Dictionaries and

Symbolic Indexing. Other than that case, the remainder of this section assumes that
both d and i are non-empty lists.

The case where i is a non-negative integer vector

If the right argument is a nonnegative integer vector then d . i is a single item at
depth#1 in d, and i is called the path to that item-at-depth. The first itgf
selects an item of d, then[ 1] selects an item of that item, themn2] selects an

item of that one, and so on. For example:

d:((1 2 3
4 5 6 7)
(8 9
10
11 12)
(13 14
15 16 17 18
19 20))
d . 1 select item 1
(8 9
10
11 12)

88



d 12 select item 2 of item 1

d. 120 select item O of item 2 of item 1
11

The selections at each level are individual applications of Index Item: first, item
dei[0] isselected, thend@i[0])@i[1],then((dRi[0])Q@ i[1])@ i[2],

and so on. These expressions can be rephrased using Over Dyad applied to Index
Item; the first isde/i[0], the second isi@/i[0 1], and the third is
d@/i[0 1 2]. Ingeneral, for a vectoriof any couat,. i isidentical tad@ /1.
Continuing the above example:

((d @ 1) @ 2) @ O selection in terms of a series ©§
11

de/ 120 selection in terms a§-Over
11

The case where the items of i are non-negative integer vectors
(cross-sectional index)

Index is cross-sectional when the items of i are lists. That is, items-at-depth iny are
indexed for paths made up of all combinations atoms o ] and atoms ofi [1]

and atoms ofi [2], and so on to the last item of i. The simplest case of cross-
sectional index occurs when the items of i are vectors. Forexatmple2 0;0 1)

selects items 0 and 1 from both items 2 and O:

d. (2 0;,01)

((13 14 item O of item 2
15 16 17 18) item 1 of item 2
(1 2 3 item O of item O
456 7)) item 1 of item O

Note that items appear in the result in the same order as the indices appear in i.

The first item of i selects two items of d, asd@i [0]. The second item of i
selects two items from each of the two items just selected(d8in[0])@"i[1].

If there had been a third vector item in i, say of count 5, then that item would select
five items from each of the four items-at-depth 1 just selected, as in
((d@if[0])@'i[1])@''i[2], and so on. When the items of i are vectors the

K Reference Manual 4: \Verbs 89



result is rectangular to at least depth, depending on the regularity of d, and the
kth item of its shape vector i%i [k] for every k less tharki. That is, the first
#1 items of the shape of the result afre ' 1 .

The case where the items of i are rectangular non-negative integer lists

More general cross-sectional indexing occurs when the items of i are rectangular
lists, not just vectors, but the situation is much like the simpler case of vector items.
In particular, the shape of the result,ig”: ' 1.

The case where some of the items of i are nil

Nils in the right argument mean “select all”: if[ 0] is nil, then continue on with

d and the rest of i, i.e. _ i;if i[1] is nil, then for every selection made
through i [0], continue on with that selection and the rest of i, 2.e. i; and

so on. For examplegd . (; 0) means that the Oth item of every item of v is se-
lected:

d . (;0)
(1 2 3 item O of item O
8 9 item O of item 1
13 14) item O of item 2

Another example, this time with [1] equal to nil:

d . (0 2;;1 0)

((2 1 items 1 and O of item O of item O
5 4) items 1 and O of item 1 of item O
(14 13 items 1 and O of item O of item 2
16 15 items 1 and O of item 1 of item 2
20 19)) items 1 and O of item 2 of item 2

Note thatd . (;0) isthe same asl . (0 1 2;0), but in the last example,
there is no value that can be substituted for nifdn 2; ; 1 0) to get the same
result, because when item 0 of d is selected, nil actsdlike but when item 2 of
d is selected, it acts like 1 2.

The general case of a nonnegative integer list i

In the general case, when the items of i are nhonnegative integer atoms or lists, or
nil, the structure of the result can be thought of as cascading structures of the items
of i. Thatis, with nils aside, the result is structurally lik¢0 ], except that wher-

90



ever there is an atom ih[0], the result is structurally like [1], except that
wherever there is an atomin 1], the result is structurally like[27], and so on.

The general case of Index can be defined recursively in terms of Index Item by
partitioning the list i into its first item and the rest:

Index:{[d;F;R] :[ n ~ F; Index[d; *R; 1 _ R]
0 = #R; d @ F
@ F; Index[d @ F; *R; 1 R]

Index[d;; R]'F 1}

Thatis,d . i is Index[d;*i;1 _ 1i]. Towork through the definition, start

with F as the first item of i and R as the remainder. At each step in the recursion, if
F is nil then select all of d and continue on, with the first item of the remainder R as
the new F and the remainder of R as the new remainder; otherwise, if the remainder
is the empty vector apply Index Item (the right argument F is now the last item of i),
and we are done; otherwise, if F is an atom, apply Index Item to select that item of
d and continue on in the same way as when F is nil; otherwise, apply Index with
fixed arguments d and R, but independently to the items of the list F.

Dictionaries and Symbolic Indexing

If i is @ symbol atom then d must be a dictionary or handle of a directory on the K-
tree, andd . i selects the value of the entry named in i. For example, if:

dir: .((a;2 3 4); ("b; "abcdefg"))
then dir . b IS "abcdefg" and dir . ('b;1 3 5) is "bdf".

If i is a list whose items are nonnegative integer atoms and symbols atoms, then
just like the nonnegative integer vector cage, i is a single item at depthi

in d. The difference is that wherever a symbol appears in i, say as the kth item, the
selection up to the kth item must produce a dictionary or a handle of a directory.
Selection by the kth item is the value of an entry in that dictionary or directory, and
further selections go on from there. For example:

(1;.((Ca; 2 3 4); (Cb; 10 20 30 40))) . (1; "b; 2)
30

As we have seen above for the general case, every atom in the kth item of i must be
a valid index of all items at depth k selecteddy. k # i. Moreover, symbols
can only select from dictionaries and directories, and integers cannot. Consequently,

K Reference Manual 4: \Verbs 91



92

if the kth item of i contains a symbol atom, then all items selected hy k # 1
must be dictionaries or handles of directories, and therefore all atoms in the kth
item of i must be symbols.

It follows that each item of i must be made up entirely of nonnegative integer
atoms, or entirely of symbol atoms, and if the kth item of i is made up of symbols,
then all items at depth k in d selected by the first k items of i must by dictionaries.

Note that if d is either a dictionary or handle to a directory then , !'d is a list
of values of all the entries.

Facts About Index
In the general case of a one-item listli,. i is identical tod @ *i.

When the index i is the empty list, i.g.), the meaning is “Index All". That is,
when i is the empty list thea . i is d. For example:

123 . () 10 . ()
12 3 10

The last paragraph in the definition of Index Item applies equally to Index and
Amend.

Error Reports

Domain Error if the symbol d is not a handle, i.e. does not hold the name of an
existing global variable.

Index Error if any atom in i is not a valid index to the item-at-depth in d.

Type Error if any atom of i is not an integer, symbol or nil.



Join
X, ¥
Arguments
Any atoms or lists.
Definition
Join connects the items of x with the items of y. The coust,of is (#x)+ (#vy).
If x is an atom then it is identical to the firstitem»f y , and if y is an atom it is

identical to the lastitem ok, v . Ifxisalistthenx [1] isidentical to(x, y) [i],
and ifyis alisttheny [1] is identical to(x, y) [ (# x)+1i]. For example:

1, 4567 123, 4
1 45 6 7 1 2 3 4
123, 45 67
1 2 3 4567
123, (81 6;357;49 2)
(1 item O of the join
2 item 1
3 item 2
8 1 6 item 3
357 item 4
4 9 2) item 5
("canoe"; "dinghy), ("kayak";66545; {x + y})
("canoe" item O of the join
“dinghy item 1
"kayak" item 2
66545 item 3
{x + v}) item 4

K Reference Manual 4: \Verbs 93



Less
x <y
Arguments

The arguments x and y are conformable atoms or lists. When both are atoms they
must both be numeric, or both characters, or both symbols. The result is the integer
atom O or 1, or an integer list consisting of O's and 1's.

Definition
Less is an atom function. For atoms x and y, the value &f v is:

* 1if x and y are numeric, and x is less than y in the usual mathematical
sense, and 0 otherwise;

» 1 if x and y are characters, and the ASCII value of x is less than the ASCII
value of y, and O otherwise (see the system functionfor ASCII values);

* 1if x and y are symbols, and x comes before y in lexicographic order, and 0
otherwise.

For example:

1 <-1012
0001
ngn g Ngn

"aA" < "Z"
01

“inch "mile < “foot ‘yard
01

Comparison tolerance is used when both x and y are numeric and at least one is
floating-point. Thatisx < yisOifxandy are close in value, even if x is actually

less thany.

1 < 1.000000000001 0.999999999999 <« 1
1 1

1 < 1.0000000000001 0.9999999999999 <« 1
0 0

94



Note thatO T (integer infinity) is greater than all other integérs,is less than all
other integers, and01 is less than all integers except. Similar relations hold
for the floating-point value8i, -01, andOn.

Error Reports
Length Error if the arguments are not conformable.

Type Error if atoms x and y are not both numeric, or not both character, or not both
symbols.

K Reference Manual 4: \Verbs 95



Make / Unmake Dictionary

96

X

Description

Create a dictionary from a list x of a special form, or create a list of that form from
a dictionary x.

Argument
The argument x is either a dictionary or list satisfying the following conditions:

(i) each item is a list with two or three items;
(i) the first item of each item is a symbol that is a valid dictionary entry; and

(i) if an item has three items then the third one is a dictionary.

Definition

If x is a list as described above thenx is a dictionary whose entries are the first
items of the items of X, i.e.: 'x . That is, the dictionary entry created from the
ith itemx[1i] isx[1;0]. Also, the value of the dictionary entry created from
x[1]is x[1;1], and if x[i] has three items ther[i;2] is the attribute
dictionary of that entry. For example, the following expression creates a dictionary
with 2 entries’ a and " b, and the display class 0b is “button :

.((CCa;1l 2 3); (Cb;"243";., ("c; button)))
.a
3
c.b
"243"
c.b..c
"button

N Q Q

If X is a dictionary then. x is a list of this special form, and x is identical to
(e x).

Error Reports

Rank Error if the argument x does not have the appropriate shape as specified in (i)
above.

Type Error if any item of the items of x is not as specified in (ii) and (iii) above.



Match
X~y
Arguments
Any atoms or lists x and y.
Definition
The result is the integer atom 1 if x is identical to y, and otherwise it is the integer
atom 0. Comparison tolerance is used when comparing numeric values when at

least one is floating-point; see Equal for an example of its effect. Empty lists do not
necessarily match other empty lists; they must be of the same type.

2 3 ~ 2 3 () ~ 10 PR LI ngn

14

K Reference Manual 4: \Verbs 97



Max / Or

98

x |y

Arguments

The arguments are conformable numeric atoms or lists.

Definition

Max / Or is an atom function. For atoms x and y the result is the mathematically
greater of the two. For example:

3 1 8 123.45 | 987.65
8 987.7

3 | -8 123.45 | -987.65
3 123.4

If both arguments are integers, the result is integer, and if at least one is floating-
point, the result is floating-point.

When the arguments consist of the integer atoms 0 or 1, the result is the logical-Or
function:

0011 1] 01C01
0111

Error Reports
Length Error if the arguments are not conformable.

Type Error if either argument is not numeric.



Min / And
X &y
Arguments
The arguments are conformable numeric atoms or lists.
Definition
Min / And is an atom function. For atoms x and y the result is the mathematically
lesser of the two. For example:

3 & 8 123.45 & 987.65
3 123.45

3 & -8 123.45 & -987.65
-8 -987.65

If both arguments are integers, the result is integer, and if at least one is floating-
point, the result is floating-point.

When the arguments consist of the integer atoms 0 or 1, the result is the logical-
And function:

0011 1] 01C01
0001

Error Reports
Length Error if the arguments are not conformable.

Type Error if either argument is not numeric.

K Reference Manual 4: \Verbs 99



Minus

100

X -y

Arguments

The arguments are conformable numeric atoms or lists.

Definition

Minus is an atom function. For atoms x and y the result is the mathematical differ-
ence of the two.

If both arguments are integers, the difference is integer, and is computed using
integer arithmetic.

If one of the arguments is floating-point, the other is made floating-point (if it is not
already), and the difference, which is also floating-point, is computed using float-
ing-point arithmetic.

The result is 0.0 if the mathematical result would be too small in magnitude to be
represented as a floating-point number.

Error Reports
Length Error if arguments are not conformable.

Type Error if either argument is not numeric.



More
X >y
Arguments
The arguments x and y are conformable atoms or lists. When both are atoms they
must both be numeric, or both characters, or both symbols.
Definition
More is an atom function. For atoms x and y, the value of vy is:

* 1if x and y are numeric, and x is greater than y in the usual mathematical
sense, and 0 otherwise;

* 1if x and y are characters, and the ASCII value of x is greater than the
ASCII value of y, and 0 otherwise (see the system functionfor ASCII
values);

* 1if x and y are symbols, and x comes after y in lexicographic order, and O
otherwise.

For example:

1 >-1012
1100
ngn o> Ngn

"aA" > "Z"
10

“inch "mile > “foot ‘yard
10

Comparison tolerance is used when both x and y are numeric and at least one is
floating-point. Thatis,x > y is 0 if x and y are close in value, even if X is actu-
ally greater than y.

1.000000000001 > 1 1 > 0.999999999999

1.0000000000001 > 1 1 > 0.9999999999999

K Reference Manual 4: \Verbs 101



Note thatOT (integer infinity) is more than all other integeesy is less than all
other integers, and01 is less than all integers except. Similar relations hold
for the floating-point value8i, -01, andOn.

Error Reports
Length Error if the arguments are not conformable.

Type Error if atoms x and y are not both numeric, or not both character, or not both
symbols.

102



Negate
- X
Argument
X is any numeric atom or list.
Definition

Negate is the atom function defined by - x . The type of the result (integer or
floating-point) for an atom argument x is the same type as x.

Error Reports
Type Error if the argument x is not numeric.

K Reference Manual 4: \Verbs 103



Not / Attribute

104

~ X

Argument

The argument x is a numeric atom, symbolic atom, or a list whose atoms are all
numeric or all symbols.

Definition

Not / Attribute is an atom function. If x is numeric, thenis 0=x. For example:

~ 10 logical negation
01

~ 4.6 0 -4.6 general case
010

If x is a symbol atom, saya, then ~x is “a. . Consequently, if the symbol x is a
handle holding the name of a global variable, thenis the handle of the at-
tribute directory of that variable. For example, if x is a handle then the dependency
definition on this handle i$~x) . *d , and the dependency definitions for all en-
triesinx arex [~!d; “d].

Also, the compound handlea.b.c can be produced from the simple handles
‘a, "b,and’ ¢ as follows:

{"s($ ~x) , $yl/a b c
(see Format, Format (Dyadic) and Over).

Error Reports
Type Error if an atom in x is not a symbol or numeric.



Plus
X + vy
Arguments
The arguments are conformable numeric atoms or lists. The result is numeric; if
both arguments are integer atoms or list, the result is integer.
Definition
Plus is an atom function. For atoms x and y the result is the mathematical sum of
the two.

If both arguments are integers, the sum is integer, and is computed using integer
arithmetic.

If one of the arguments is floating-point, the other is made floating-point (if it is not
already), and the sum, which is also floating-point, is computed using floating-
point arithmetic.

The result is 0.0 if the mathematical result would be too small in magnitude to be
represented as a floating-point number.

Error Reports
Length Error if arguments are not conformable.

Type Error if either argument is not numeric.

K Reference Manual 4: \Verbs 105



Power

106

A

X y

Arguments

The arguments are conformable numeric atoms or lists.

Definition

Power is an atom function. Integer arguments are converted to floating-point be-
fore the function is applied. The definition for atoms x and y is as follows:

* If X is positive thenx”y is identical toexp[y*1log[x]]. (A special
case is a positive whole number y, wherey is the product of x with
itself y times);

* If x equals 0 thenx~y is 0.0 for all nonzeroy;

e IfyisOthenx”y is 1.0 for all x;

* If x is negative and y is a whole number theny is - (-x) ~y ifyis odd
and (-x) "~y if even.
For example:
273 -2.072
8.0 4.0
-2"3 2.070.5
-8.0 1.414
0”0 1071000
1.0 01i

The result is 0.0 if the mathematical result would be too small in magnitude to be
represented as a floating-point number. Also, the resuit {@finity) if the math-
ematical result would be too large to be represented, and similary for

Error Reports

Domain Error if the left argument is negative and the right argument is not a whole
number.

Length Error if arguments are not conformable.

Type Error if either argument is not numeric.



Range

? X
Argument
Any list.
Definition

The result is a list of the unique items of x, in the order of their first occurrence
(i.e., the occurrence with the smallest index). For example:

2?96 86 97896 ? "strange"

9 6 8 7 "strange"
? "raccoon"
"racon"

? (9 2 3;4 5;9 2 3;6 7 8;4 5;9 2 3)
(9 2 3
4 5
6 7 8)

See the primitive function Group for the relationship between it and this primitive.
Range is an identity function for empty lists.

Error Reports
Rank Error if X is an atom.

K Reference Manual 4: \erbs 107



Reciprocal

108

o
° X

Arguments
The argument x is a numeric atom or list.

Definition

Reciprocal is an atom function defined hyx . The result is always floating-
point, even when x is 1. When x is 060, the result i901, i.e. floating-point
infinity. Similarly, the reciprocal of infinity (and minus infinity) . 0.

o\°

%2 %1 0

0.5 1.0 01

Error Reports
Type Error if X is not numeric.



Reverse

| x
Arguments
Any atom or list.

Definition
This function reverses the order of the items in its argument. For example:

Also, since the primitive function First produces the first item in a list x, the K
idiom First-Reverse, denotetl| x , produces the last item.

*| “one “two " three
“three

Reverse is an identity function for all atoms, empty lists, and one-item lists.

| ngn | '0 | ,3 14 2
"an" 10 , 3 1 4 2

K Reference Manual 4: \Verbs 109



Rotate / Mod

110

x 'y

Description

Rotate the list y by x positions, or compute the remainder of the atom y divided by
X.

Arguments

Rotate: The left argument is an integer atom and the right argument is any list;

Mod: the left argument is a numeric atom or list and the right argument is a nu-
meric atom.

Definition
If the right argument is a numeric atom theny is Mod and the result is the

remainder of x divided by y, i.ex - y * x % y . fboth arguments are
integer, so is the result. Otherwise, the result is floating-point. For example:

5 '3 5 ! =3
2 -1

1.8 -2.7 ! 0.2 -3 4 -17 ! -4
0 0.1 -3 0 -1

If the right argument is a list ther! v is Rotate, and the result is a list with the
same items as y, but rotated #y positions (and hence the connection between
Mod and Rotate). The rotation is towards the front if x is positive and the back if x
IS negative (that is, towards index position 0 if x is positive and index position
-1+#y If xis negative).

Specifically, if x is positive and less thay then itemy [x] becomes item O of
the result, itemy [x+1] becomes item 1, and so on; itepi x-1] becomes the
last item of the result, iteny [ x-2] the next-to-last, and so on. If x is greater than
or equal toffy the remainderx ! #y is used for x. For example:

5 ! "abcdefgh" 21 ! "abcdefgh"
"fghabcde" "fghabcde"



If X is negative the rotation is in the other direction, i.e. if the positive vatus
lessthan#y thenitemy[0] becomesitemx of the result, and so on. As above,
if —x is greater than or equal #o; the remainder! #vy is used for x. For ex-
ample:

-5 ! "abcdefgh" -21 ! "abcdefgh"
"defghabc" "defghabc"

Both Mod and Rotate are atom functions of the left argument! j.ey] is an

atom function for every y. In either case the result is structurally like the left argu-
ment x, except that in the case of Mod, every atom in x is replaced by the remainder
of that atom divided by y, while for Rotate, every atom in x is replaced by the listy,
rotated according to that atom.

Error Reports
Int Error if the left argument is not integer.

Type Error if an atom right argument is not numeric.

K Reference Manual 4: \Verbs 111



Shape

112

N x

Arguments

Any atom or list.

Definition

Associated with every data object is an integer vector called the shape of the ob-
ject. An atom has an empty shape:

~ 3.14
10

A list x has a non-empty shape whose first item is the count of the list, while subse-

guent items are counts of the items-at-depth for successive depth levels in x, and
are present only if the list is sufficiently regular to those depths. For example, con-

sider the following list r:

S ab"-"cd"-"ef")
("gh";"ij"; "k1")
("mn"°"op"'"qr")
("st";"uv"; "wx"))

This is a list of four items, each of which is a list of three items, and each of these
has items that are character vectors of count 2. This list is said to be rectangular
because it is rectangular at every level, which in this case means that all items are
lists of the same count, and all items of items are lists of the same count. The shape
of a rectangular list gives the counts of the items at consecutive levels, in depth
order:

A

r
4 3 2

Each level in this example is rectangular. A list that isn’t rectangular at every level
may be rectangular for the first n levels, but irregular below that, in which case it is
said to rectangular to level n (see the topic Rectangular List in the chapter Termi-
nology). For example:



( " aby";" d"."ef")

(

(vghn.n "'"kll")
(nmnn. OpZ .nqrn)
( St"' UV",’"W"))

is rectangular to level 2, since every item is a list of count 3, but the items of items
vary. The shape of this list has only two items, even though it has three levels:

A

4 3

S

In the next example every item at level 2 has count 2, but the items of the list,
which are the lists at level 1, do not all have the same count. The shape of this list
has only one item, the count of the list, because it is not rectangular at level 2. Even
though the items at level 2 are all lists of the same count, the list cannot be rectan-
gular at that level because of gaps introduced at level 1.

( b"."cd";"ef")

("
(lgh". 'jn)
(l l"'" ",'"Op",'"q]f")
( St"'" V",'"WX"))
Mt
, 4

The shape of a list always has at least one item, the count of the list. The only item
of the result of shape that can be zero is the last.

K Reference Manual 4: \Verbs 113



Take / Reshape

114

x # y
Arguments

The left argument for Take is either an integer atom or an integer vector. The right
argument is any atom or list.

Definition
If the left argument x is a nonnegative integer atom then the result pfis a list
whose count equals x and which consists of the first x items of y. If x is a negative

integer atom the result is a list whose count equals -x and which consists of the last
-X items of y.

3 #4567 89 -3 #456 789
4 5 6 78 9

If X is greater than#y or less thar-#y then the items of y are used repeatedly to
fill out the result; if x is positive the items are of y are selected cyclically from first
to last and are placed in the result first to last, while if x is negative the items of y
are selected cyclically from last to first and are placed in the result from last to first.
For example:

Note that for positive X, the shape of the resulkijsl "y.

The second case of Take is an integer vector x, and extends the first case. With one
exception x must be nonnegative, and that case is discussed below. For now as-
sume that x is positive, in which casé y is just like the case for positive integer

X, except the selected items are arranged in a rectangle of dimensions x. For ex-
ample:

T (( b"." dll.llef")
(lgh"."lj"."kll)
("mn";"op" . "qr")
(

"St";"uvll;"wxll) )
r ~4 3 2 # "abcdefghijklmnopgrstuvwxyz"
1

Once again, the shape of the resultjs "y.



If the vector x contains O’s then the shape of the result the vector consisting of the
leading items of x, up to and including the first O, thatxs$,! 1+x20]. For ex-
ample:

~2 3407 8 # "abc"
2340

If the vector x contains negative integers, there must be only one and its value must
be -1. Forexample2 -1 3 isavalidleftargumentbu -2 3 and-1 2 3 -1
are not. The following examples illustrate the general case:

2 -1 # "abcd" 2 -1 # "abcdefgh"
("ab" ("abcd"
"Cd") "efgh")

The shapes of the results:

~» 2 -1 # "abcd" ~ 2 -1 # "abcdefgh"
2 2 2 4

These examples illustrate the general case for the left argumernt; y can be
any list with an even number of items, and the result is a list of shape equal to
2, (#y) %2 . The -1 in the left argument stands fdry) %2 . A second example:

2 -1 3 # "abcdef" 2 -1 3 # "abcdefghijkl"
(, "abc" (("abc"
,"def") "def")
("ghi"
"Jk1"))

The shapes of the results:

~ 2 -1 3 # "abcdef" ~2 -1 3 # "abcdefghijkl"
21 3 2 2 3

Once again these examples illustrate the general case for the left arguniery;
y can be any list for whicky is a multiple of 6, and the result has shape equal to
2, ((# y)%6),3. The -1 in the left argument stands fdry) 6.

K Reference Manual 4: \Verbs 115



116

The general idea is that the item of the result shape corresponding to -1 is not
specified by x, but is computed to e divided by the product of all other items of

x except -1. If -1 is included in the product it simply negates what it would be
otherwise, and therefore the result shapetig) $-* / x.

Facts About Take

If the right argument is the empty list then the left argument must be the atom O or
a vector containing one or more zeros.

Error Reports

Domain Error if the left argument is an integer vector and contains more than one
negative integer, or exactly one that is not -1.

Int Error if the left argument is not integer.

Length Error if the vector left argument contains one occurrence of #k/hsinot
equal to an integer multiple of * / .



Times
X *y
Arguments
The arguments are conformable numeric atoms or lists. The result is numeric, and
if both arguments are integer atoms or list, the result is integer.
Definition
Times is an atom function. For atoms x and y the result is x multiplied by vy.

If both arguments are integers, the product is integer, and is computed using integer
arithmetic.

If one of the arguments is floating-point, the other is made floating-point (if it is not
already), and the product, which is also floating-point, is computed using floating-
point arithmetic.

The result is 0.0 if the mathematical result would be too small in magnitude to be
represented as a floating-point number. Similarly, the result & -01i when the
result is too large in magnitude.

Error Reports
Length Error if arguments are not conformable.

Type Error if either argument is not numeric.

K Reference Manual 4: \erbs 117



Value / Execute

118

. X

d @ s

Description

Evaluate the contents of x, and if d is present, in the directory named in d.

Arguments

The argument x is either a character vector, enlisted character vector or a symbol
atom. The argument d is a symbol atom.

Definition

If in the monadic case x is a character vector then its contents must be a valid
expression or command, and the effect of Value is to evaluate that expression or
execute that command. The result ok is the result of the expression, except
when the last thing executed in the expression is Assign, Amend or Iltem Amend
(see the chapter Amend, Index, Apply and Assign), in which case the result is nil
(these exceptions are exactly the same as when the result of an expression entered
in an interactive session is not displayed). The result is also nil when the contents

of x are a valid command because commands do not have explicit results. For
example:

"2+3%4"
14
"r: 2+3*4"
Nothing displayed; the result is nil.

Again in the monadic case, if x is a symbol atom that holds the name of a global
variable, the esult of. x is the value of that variable. For example:

f: {x ~ 2}
. f
{x ©~ 2}

In the dyadic casei@x the left argument must be a symbol holding the name of a
directory on the K-tree, in which case the execution or evaluation of x takes place
in that directory. This means that any relative names in x are resolved with that
directory as the reference point. Names with a single leading dot are absolute refer-
ences and always refer to the same object.



If d is not present the execution or evaluation of x takes place in the current direc-
tory.

Execution of a character vector x proceeds just as if its contents were typed in an
interactive session and Return was pressed, assuming that in the dyadic case that
the Directory command was first executed to change to the current directory to the
one named in d. In particular, if X is a character vector holding a function expres-
sion,asin" {x + a}", the effect of Execute is to bind any relative references to
global variables — a in this example — to the directory named in d, or in the absence
of d, the current directory.

Note that when both d and x are symbol atom$, x and d . x coincide with
cases of Index Item and Index.

The monadic case s isidenticalto d @ s.

Error Reports

Domain Error if the argument x is not a character vector, enlisted character vector,
or symbol atom, or if the symbol d is not a handle, i.e. does not hold a valid direc-
tory name.

K Reference Manual 4: \Verbs 119



Where

120

& X

Arguments

The argument x is any nonnegative integer atom or vector.

Definition

The result is a nonnegative integer vector containing indices of x, i.e. integers from

! # x, where each index i appeaxd i] times. In particular, for a boolean list x,
the result is a vector of the indices of x where 1's appear. For example:

001 01O0O0T71
the indices of 1’s in the argument

N
O 2 P 2

7
30 4
0 02222 three O0's, no 1's, and four 2’s

An atom is treated like a one-item list, and always returns that many 0’s, as in:

&3
000

Error Reports

Domain Error if the argument is an integer atom or vector, but contains negative
integers.

Int Error if the argument is not an integer atom or vector.



CHAPTER 5

ADVERBS

Adverbs (sometimes called operators) modify nouns and verbs to create new verbs.
For example, Plus is a dyad that produces the sum of its two arguments, while Plus-
Over, denoted by+/ , is a monad that produces the sum of all items of its argu-
ment. There are six adverbs:

» Each, denoted by, which applies the function it modifies to the items of its
arguments, rather than the arguments themselves;

* Each Pair (" : ),

» Each Right (/ : ), and

» Each Left (\ : ), which are variants of Each;
» Over (/) and its counterpart,

» Scan (\ ).

The object modified by an adverb is called its operand. Syntactically, an adverb
symbol must be immediately adjacent to its operand. For exampleis Plus-
Over, but+ / is not.

Just as verbs are resolved to functions for execution, the verbs created by adverbs
are resolved to derived functions.

There are essentially two sources of errors when using adverbs: the adverbs them-
selves and the functions to which they are applied. For example, in applying the
Each adverb to a dyad f, as in the expression' vy , the expression will fail if x

and y are not conformable, which is an Each error, or if the function f fails for
some pairx[i] and y[i] . The errors listed in any Error Reports subsection in
this chapter are those for which the adverbs are the direct cause.

K Reference Manual 121



Each

122

f' x

x f' vy

f'ix;y;z...]

Description

Apply the function f to the items of the argument(s).

Arguments

In the first case, the operand f is a monad and x is an atom or list. In the second
case, fis a dyad and x and y can be either atoms or lists, but if both are lists they
must have the same count. The last case extends the second case: f can have any
valence of at least one, the number of objects between brackets equals the valence
of f, and each argument can be an atom or list, but if two or more are lists then all
lists must conform.

Definition
In the first case, Each applies a monad f to each item of x:

g: !:" 6 45 Enumerate-Each
gq
(01 2345 Enumerate 6
0123 Enumerate 4
01 2 3 4) Enumerate 5
#:' g Count-Each
6 4 5
|:' g Reverse-Each
(543210
3210
4 3 2 1 0)
+/' g Sum-Each
15 6 10

Note that whenever Each is applied to the monad of a primitive verb! a$ ifor
Enumerate-Each, the monadic case must be made explicit by modifying the verb
with colon. The dyadic case is assumed if no modifier is present. For example,
Take-Each, an example of the dyadic case 'y :



#' !:' 6 4 5
(

O = O
N W DN
w O W WO

1
2 2 3
1 01

DS

2 3)

In the dyadic case f'y , the arguments x and y must conform. For example,
Join-Each of two atoms is the same as Join:

"a" ’ | "b" ("a" , ] "b") ~ "a" , "b"
"ab" 1

Join-Each of an atom and a list joins the atom to each item of the list:

"a" ,' "bcd" "abc" ,' "d"
("ab" ("ad"
"ac" "bd"
"ad") "cd)

Join-Each of two lists joins items of one to items of the other:

"abc" ,' "def"
("ad"
"be"
"CE")

The general case is a straightforward extension of the dyadic case. If there are only
two arguments x and y thel' [x; y] is identical tox f'y . Otherwise, if all
arguments are atoms,' [x;y; z;..] isidenticaltof [x;v;z;..] . In general,
when there are lists among the arguments they must all conform. The ith item of
the result is

f[ xi; yi; zi; .]

where xi denotesx [1] if x is a list and x itself if x is an atom, and similarly
for yi, zi, etc. As in the other cases, if the list arguments are the empty list then
so is the result.

If x is an atom thenf 'x is £ x.
The valence off ' equals the valence of f.

If at least one argument d@f' is the empty list then so is the result, and the function
f is never applied.

K Reference Manual 5: Adverbs 123



Error Reports

Length Error if, in the case of dyadic f, the arguments x and y do not conform, or in
the general case, two or more arguments are nonconforming lists.

124



Each Left
x f\: y

Description
Apply dyad f to each item of x with all of y.

Arguments

The operxand f is a dyadic function, and the arguments x and y can be any atom or
list.

Definition

If X is an atom thenx f\:y is f[x;vy].

If x is a listthenx £\ :y is a list with the same count as x and the ith item of the
resultis f[x[i];y] foreveryi.

For example, Join-Each-Left joins every item of the left argument to the right argu-
ment:

234 ,\: 5617

W N
o1 o1 ;
o O O
N J

)
(Compare with the example 3 4, /:5 6 7 inthe section on Each Right).

A commonly used K idiom is “In-Each-Left”, thatis,in\ : . By itself, the system
function in searches for its left argument among the items of its right argument.
However, often one wants to search for every item of the left argument among the
items of the right, and that functionality is provided byn\ : . For example:

4 in 17 2 463

1 4 is an item of the right argument
43 in 17 2 463

0 vector4 3 is not an item of the right
4 3 in\: 1 7 2 4 6 3

11 both 4 and 3 are items of the right

See the system function1in and the companion idiorn/ : in the section on
Each Right.

K Reference Manual 5: Adverbs 125



If x is the empty list then so is the result, and the function f is never applied.

x f\:y isidentical tox f'y foratomsy .

x f\:y isidenticaltof [;y] 'x forallxandy (see Projection; Fixing Function
Arguments in the chapter Functions).

126



Each Pair
f': vy
x f': vy
Description
Apply dyad f to pairs of consecutive items.

Arguments

The operand f is a dyadic function, and the arguments x and y can be any atom or
any non-empty list.

Definition

Each Pair applies its argument function f to successive pairs of consecutive items

in the list argument y. If y is a list of count at least two, thénx is a list with
count (#x) -1 and theithitem oftheresultis[x[1i+1];x[1]]. Forexample:

-':'1 4 9 14 25 36
355 11 11

Find sentence endings in text, say all periods followed immediately by blanks:

a: "This seeks sentence endings. There are two. "

& { (X:" " ) &y e " . " } | : a
27 42
al[27 42] check that they are indeed periods

The result is always the empty list when the argument x is a list of count 1, and the
function f is never applied.

The dyadic casex f':y is defined in terms of the monadic asx) , f':yv,
and in addition is defined for the case when vy is the empty list.

f':x IS f[x;x] for atoms x.

Error Reports
Length Error in the monadic case if the argument is the empty list.

K Reference Manual 5: Adverbs 127



Each Right

128

x £/ vy
Description
Apply dyad f to all of x with each item of y.

Arguments

The operand f is a dyadic function, and the arguments x and y can be any atom or
list.

Definition

Ifyisanatomthenx £/:y is f(x;y],andifyisalisttherx £/:y isalist

with the same count and the ith item of the result isc; y[1]] for everyi.Ify
is the empty list then so is the result.

For example, Join-Each-Right joins every item of the right argument to the left
argument:

234 ,/:567

N NN
w W W
ISTANENTAN
~ o U1

)
(Compare with the example 3 4,\:5 6 7 inthe section on Each Left).

A commonly used K idiom is “Find-Each-Right”, that 5/ :. By itself, Find
searches for its right argument among the items of its left argument. However,
often one wants to search for every item of the right argument among the items of
the left, and that functionality is provided by : . For example:

172 46 10 3 2 4

3 index of 4 in left argument
172 46 10 3 2 4 3

7 4 3 is not an item of left argument
172 46 10 3 ?2/: 4 3

36 indices of 4 and 3 in left argument

See the companion idiomin\ : in the section on Each Left.

If y is the empty list then so is the result, and the function f is never applied.



x f/:y isidenticaltox f'y for atoms x.

x f/:y isidenticaltof [x; ] 'y forallxandy (see Projection; Fixing Function
Arguments in the chapter Functions ).

K Reference Manual 5: Adverbs 129



Over Dyad

130

£/ y
x £/ vy

Description
Inthe £/ v case:(..((y[0] £ y[1]) £ y[2]) £ ..) £ (*|y)

Inthe x £/ v casei(..(x £ y[0]) £ v[1]) £ .) £ (*|y)

Arguments

The operand f is a dyad, and the arguments x and y are any atoms or lists.
Definition

Consider the second case, £/ y . The left argument x must be a valid left argu-

ment of f and every item of the right argument must be a valid right argument,
unless it is an atom, and then the atom must be a valid right argument.

If y is a non-empty list the evaluation proceeds as follows:

x: f£[x; *|y] * |y Is the last item of y

That is, f is applied iteratively to the left argument with the items of y as succes-
sive right arguments. The result of £/ y is the last value of x in the above
sequence. For example, all items of a list can be added to an initial value as fol-
lows:

10 +/ 1 2 3
16

The first case,f/ vy, is similar. If y is a list with at least one item the evaluation
proceeds as follows:



x: fx; *|y] * |y Is the last item of y
For example:

+/1 2 3 +/1 +/,1
6 1 1

Over Dyad is used in two important K-idioms/ and &/, generally known as
Maximum and Minimum, respectively. When applied to a numeric vec¢torpro-
duces the greatest value among the items of its argument; amqgoduces the
least value. For example:

|/ 1 4 -6 91 3 &/ 1 4 -6 913
9 -6

In the special case where the argument x is a vector with boolean values 0 and 1,
| /x is 0 only if all items of x are 0, and/x is 1 only if all items of x are 1.
Consequently| / and &/ applied to boolean vectors are used to check for the
condition “if some condition is true” and “if all conditions are true”.

See Over Monad for finding the largest and smallest values in an arbitrary numeric
list.

Note that when Over is applied to a primitive verb there is no immediate context to
establish whether the verb denotes its monad or dyad. The general rule is applied,
which says that it is the dyad. For example, is Plus-Over, not Flip-Over. As in

other situations, the monad must be explicitly specified by modifying the symbol
with a colon, as in+: / .

Like the primitive verbs, the derived vert/ for dyadic f has two cases, one
monadic and one dyadic, but unlike the primitive verbs, in situations where the
valence cannot be determined from context the monadic case is assumed. For ex-
ample, if £: + then fis strictly dyadic; ifg: +: then g is strictly monadic, but

if h: +/ thenhis monadic. However, h is not strictly monadic; it can be evaluated

K Reference Manual 5: Adverbs 131



132

as adyad, asin[x; y], but when a choice must be made, it will be monadic. The
reason that ambivalence is allowed here is that the functionality of the monadic
and dyadic cases of Over is essentially the same.

If yisanatomthent/y isyandx f/y is f[x;y] .
If y is the empty list then so ig f/y and the function f is never applied.
If y is a one-item list thent /y is *vy .

If yis empty and fis either , * , | ,or& ,thenf/y is 0, 1, 0, or 1, respectively,
and the function f is never applied.

Note thatx f/y isidenticaltof/ (,x),vy.

Error Reports

Length Errorin £/x if the argument x is the empty list and function f is not one of
+, *,],0r &.



Over
f/lx;yiz;..]
Description
Apply f iteratively to x and successive items of y, z, ... .

Arguments

The operand f is a function with at least two arguments. The relationship of the
Over-f arguments to the arguments of f is like that of Each-f to f except for the
first argument x. That is, each argument other than the first can be an atom or list,
but if two or more of those are lists then all those lists must conform. The first
argument x is any valid first argument of f.

Definition

The general case of Over for functions with valence at least two is a direct exten-
sion of the dyadic case. The first argument x serves the same role as the left argu-
ment of the dyadic case, and all other arguments have the same role as the right

argument. That is, if all of y, z,... are atoms then[x; y; z;..] is identical to
flx;y;z;...] ,and otherwisef/ [x;v;z;..] IS evaluated as follows:

x: f[x;Y0;2z0;..]
x: flx;yl;z1;..]

x: fx;yn;zn;..]

where yOisy [0] if yisalist ory itself if y is an atom, and similarly for y1...yn,
z0...zn. The name yn stands for the last item of y if y is a list or y itself if y is an
atom, and similarly for zn, ... . The result is the last value of x.

See the sections on Amend and Amend Item in the chapter Verbs for examples
where Over is used in the definitions of functions that describe the behavior of
these primitives.

For dyadicf,f/[a;b] isidenticaltoa £/ b.

For functions f with valence at least three, the valence/oéquals the valence of
f.

K Reference Manual 5: Adverbs 133



If all list arguments other than the first equal the empty list then the result is the
first argument, and f is never applied.

Error Reports
Length Error if any two list arguments among Y, z,... do not conform.

134



Over Monad
f/ x
n f/ x
b f/ x

Description

Apply f iteratively to x until, in the first case, a result matches either the previous
or the initial result, or in the second case, n times, or in the third case, the value of
b applied to the iterative result is O.

Arguments

The operand f is any monad, and x is a valid argument of f. The argument n is a
positive integer while b is a monad.

Definition
The function f is applied iteratively to x, as in:

The result is the last value of x or the next-to-last, depending on the case.

In the other cases of Over, the iteration results accumulate in the first argument,
while the other arguments determine by their count the number of iterations. Over
for a monad must provide other means for terminating the iterative process, which
are as follows:

* the evaluation off / x ends when two successive iterative results match, or
the result of an iteration matches that of the first iteration. The primitive func-
tion Match is used in the test, and therefore comparison tolerance is used for
floating-point values. The result is the next-to-last value of x;

* the evaluation ofn £/ x ends after n iterations (this case is sometimes called
Do). The result is the last value of x;

K Reference Manual 5: Adverbs 135



136

* the evaluationofo £/ x endswhentheresultaf [x] matches O (this case
is sometimes called While). The result is the last value of x, that is, the first
value of x wher® [ x] matches 0. The primitive function Match is used in the
test, but comparisons to O are never approximate, even when comparison tol-
erance is used (see Comparison Tolerance in the chapter Terminology).

An interesting example of the first of these three cases is the common ptrage
This idiom applies to any list x and produces a list of depth 1 whose items are the
atoms in x. For example:

,// (Ma"; (1 2; “be; ("xyz"; 2.35)))
("a";l;2; \bc;"X";"y";l|zl|;2.35)

The derived function, // is (,/)/ . The comma in / denotes the dyadic
primitive function Join, and therefore/ is an instance of Over Dyad. Conse-
guently, / denotes both a monad or dyad; which itis /i# cannot be seen from

the immediate context (which js//) and therefore the monad case is assumed
(see Over Dyad). Consequently/ x is Over applied to the monad /x} . This

monad joins all items of x into one list of depth one less than the depth of x unless
the depth of x is 0 or 1, in which case its result equals x. Over Monad has the effect
of applying this function repeatedly until there are no changes, that is, until the
depth of the resultis 0 or 1. See Scan Monad for a trace of the intermediate results
of the iteration.

The expressiong / and &/ were introduced in Over Dyad as Maximum and
Minimum for finding the greatest and least value in a numeric vector. To apply
these expressions to lists of greater depth, first Ugeto collect all items of a list

in a list of depth 1, and then apply ors/ . That is, the general form of Maxi-
mum s | /, // and the general form of Minimum is/, // . For example:

|/, //7(1; (2.3 25; (6 7 =9;10)))
25.0

&/,//(1; (2.3 25;(6 7 =9;10)))
-9.0

Also see the examples in Scan Monad, particularly for Do and While. The last
paragraph in the definition of Over Dyad applies equally to Over Monad.

Error Reports
Int Error if the argument n for Do is not a nonnegative integer.



Scan Dyad
£\ y
x £\ y

Description
Trace the iteration in Over Dyad.

Arguments

The operand f is a dyad, and the arguments x and y are any atoms or lists.
Definition

Scan Dyad f evaluates like Over Dyad f in all cases; under the same conditions
where the iterative definition of Over-f applies, the result of Scan-f is a list whose
items are the intermediate results, in order, of that iterative process (the successive

values of x in the definition of Over Dyad f). In particular, the Over-f result is the
last item of the Scan-f result. For example:

+\ 1 3 57
149 16

The last two paragraphs in the definition of Over Dyad apply equally to Scan Dyad.
If yisanatomthenf\ y isyandx f\y is f[x;y].
If y is a 1-item list thenf\ vy is , vy .

If y is the empty list then so is\ v, while x £\ vy is , x . This differs from Over
Dyad f, when the monad forfy () is defined only for, *, | , ands .

K Reference Manual 5: Adverbs 137



Scan

138

N Ix;y5..]
Description
Trace the iteration in Over.

Arguments

The operand f is a function with at least two arguments. The relationship of the
Scan-f arguments to the arguments of f is like that of Each-f to f except for the first
argument x. That is, the number of objects between brackets equals the valence of
f, and the arguments other than the first must all conform. The first argument x is
any valid first argument of f.

Definition

Scan is to Over as Scan Dyad is to Over Dyad.

Fordyad f,f\ [a;b] isidenticaltoa f\ b.

For functions f with valence at least three, the valence\oequals the valence of
f.

If all list arguments other than the first match the empty list the result is

Error Reports
Length Error if any two arguments among y, z,... do not conform.



Scan Monad
f\ x
n £\ x
b £\ x

Description
Trace the iteration in Over Monad.

Arguments

The operand f is any monad, and x is a valid argument of f. The argument n is a
positive integer while b is a monad.

Definition
Scan Monad is to Over Monad as Scan Dyad is to Over Dyad.

The following examples could have been given in the section on Over Monad. The
advantage of giving them here is that Scan reveals all intermediate results, making
it easier to understand the iterative process. An important use of Scan is helping to
set up the right function for Over.

fe{:lx ! 2; x;  x % 2]}
f\ 5
;5
f\ 12
12 6 3
f\ 640640
640640 320320 160160 80080 40040 20020 10010 5005

The second and third cases provide ways for the user to specify conditions under
which the iteration process is terminated. A nonnegative integer left argument speci-
fies the actual number of iterations. This form is sometimes called Do with Trace:

£\ 640640

640640 320320 160160 80080 40040 20020 10010 5005
4 £\640640

640640 320320 160160 80080 40040

The first item is the initial value of the argument x, and the first four iterates follow.

K Reference Manual 5: Adverbs 139



140

If the left argument is a monad the iteration proceeds until the result of that func-
tion applied to an intermediate result matches 0. This form is sometimes called
While with Trace:

b:{x > 100000}
b £\ 640640
640640 320320 160160 80080

Recall the expression //x discussed in the section on Over Monad, which ap-
plies to any list and produces a list of depth 1 whose items are all the atoms in x. It
may help to see how this function produces its results by evaluating the corre-
sponding Scan expressipri\x and examining the intermediate results. The dis-
play of the result below has been edited to make comparisons of the intermediate
results easier.

/N ("a"; (1L 2; “be; ("xyz"; 2.35)))

(("a"; (1 2; bc; ("xyz";2.35))) Argument
("a";1 2; bc; ("xyz";2.35)) 1st iteration
("a";1;2; 'bc;"xyz";2.35) 2nd iteration
("a";1;2; bce;"x";"y";"z";2.35)) 3rd iteration

Finally, the last paragraph in the definition of Over Monad applies equally to Scan
Monad.

Error Reports
Int Error if the argument n for Do with Trace is not a nonnegative integer.



CHAPTER 6

& ASSIGN

All the constructs in this chapter, which are in terms of brackets and semicolons,
have equivalent forms in terms ofind sometimeg , and the latter are sometimes
more widely applicable. For example, the semicolons and brackets in the present
constructs are syntax, so that the number of objects appearing between brackets is
fixed at each occurrence. As a consequence, the Index expresgsion; c] will

always access items of x three levels down, no matter how often it is evaluated. On
the other handx . p will access items at leveto , which may vary from one
evaluation to the next. However, the use of semicolons and brackets is convenient,
and often easier to read than the other forms. For example, most function applica-
tions involve an unchanging function expression, and therefore a fixed number of
arguments, so that the bracket form of Apply (€.ga;b;c]) is appropriate.
Bracket-semicolon constructs have the additional advantage of familiarity for most
readers, and because of that are used in the definitions of the other forms in the
preceding chapters.

You may notice in examples like: "3CAK342" that the result is not displayed

in the session log. All constructs in this chapter usirge treated specially by K

for display purposes: whenever any such construct is the last one executed for an
input line in an interactive session, its result is not displayed.

K Reference Manual 141



142

Description

Modify the object whose name appears in place of v with the function f and the
atom or list y, whichever is present.

Arguments

The v on the left is a place holder for the name of a variable. If both f and y are
present then f is dyadic, the variable must currently have a value that is a valid left
argument of f, and y is any atom or list that is a valid right argument of f. If f is
present but y is not then f is monadic, and again the variable must currently have a
value that is a valid left argument of f. If f is not present then y is any atom or list.

Definition
In every use of Amend, the name of a variable appears in place of v. Say the name

is b. In all cases the effect is to change the value of b and the result is the new value
of b.

The first case associates the value of y with the name b, whether or not that name
previously had a value.

m assume m has not been given a value
m:"3CAK342" now give m a value
m
"3CAK342"
m: {x+y*z} give m another value
m
{x+ty*z}

Any name can be given any value, and subsequent values need not conform in any
way to previous values. This case of Amend is sometimes called Assign, but Amend
is used here for all three cases in reference to amending the K-tree.

The effect of the second case is to replace the value of bfwith v1, and in the
third case withf [b]. The explicit result is also the new value. For example:



o
OO0 39 0w
[00]

r: b +: b becomes flip b, as does the result foof+ :

The last case is syntactically a special form of the second case, but its meaning is
somewhat different. If b is a global variable and the expression y appears in

a function expression, the effect to assign the contents of y to the global variable b
in the same directory as where the function is defined. (However, if the definition
also contains an ordinary assignmentz then b will be local).

Error Reports

Various errors can occur when an improperly formed named appears in place of v,
as K attempts to parse the faulty expression.

K Reference Manual 6: Amend, Index, Apply and Assign 143



144

Description

In the first case replace the items-at-depth in the list whose name appears in place
of v at paths specified by the index lis; k ; ...) with the corresponding items-at-
depth of y. In the next two cases modify those same items-at-depth with the func-
tion f and, if present, items-at-depth of y. In the last three cases replace or modify
the list whose name appears in place of v itemwise with f and, if present, the atom
or listy.

Arguments

The first argument v is a place holder for the name of an existing variable. The
value of that variable is like the first argument of the verb form of Amend, except
that a handle is not permitted. In the first three cases thejlist; ...) is like the
second argument of the verb form. The itemgDf k;...) must satisfy the same
conditions as the verb form. The third argument f is any monadic or dyadic func-
tion; the second and fifth of the above expressions correspond to dyadic f and the
third and sixth to monadic f. The argument vy, if present, is any atom or list that
conforms with the index list in the manner described under the verb form.

There must be at least one semicolon in the index list specificaiiph; ...], or
no entries at all, or else this is Item Amend.

Definition

In every use of Amend, the name of an existing variable appears in place of v. The
value of that variable serves as the first argument d in the verb form of Amend. In
the first three cases the list ; k; ...) serves as the index listiin the verb form, and

in the last three cases the empty space between brackets represents the Enlist of nil,
and therefore these cases correspond to the verb form with the index list i equal

to, n.See Facts about Amend in the chapter Verbs for the behavior of Amend for
this i.



In all cases the variable whose name appears in place of v is modified, and in that
sense these forms of Amend are like the verb form with a handle first argument
holding this name. However, the result of this form consists only of the new values

of the modified or replaced items-at-depth; it is neither the handle nor the entire

modified value of the verb form. For example:

a: (1 2 3; 3 4°5)
r: al[l 0;0 2] +: 100 r is the result of the Amend
a
(101 2 103
103 4 105)
r

(103 105 r has the modified items-at-depth of a
101 103)

The last paragraph in the definition of the verb Amend applies equally to this form.

Error Reports

Index Error if any path in the path ligt ; k...) is not a valid path of the left argu-
ment.

Length Error if the path list ; k;..) and the last argumenty , if present, are not
conformable in the manner described under Amend in the Verbs chapter.

Length Error in the last three cases if v and y are lists with different counts.

Type Error if any atom of j; k;...) is not an integer, symbol or nil.

K Reference Manual 6: Amend, Index, Apply and Assign 145



Apply

146

fl35k;...]
]

Description
Apply the function f to the argument list within brackets.

Arguments

fis a function and the objects within brackets are proper arguments of f.
Definition

f[j;k] evaluates dyadic f;

f[j;k;1] evaluates f with valence 3 (triadic), etc.

f[] evaluates niladic f.

(See Apply Monad foE [§1] )

For functions of valence at least two, when any of the argument positions are left
blank, i.e. those arguments are unspecified, the effect is to project f onto the non-
blank, specified arguments. For example:

f:{x+y+z}
£f11; 2; 3]
6
g: fl1;; 3] g is monadic, the projection of f onto
its first and third arguments
gl2] apply g to the argument 2
6

When fewer argument positions than the valence of f appear between the brackets,
say n argument positions and valence m, thenlastarguments are considered to

be unspecified and the function application is a projection onto the specified argu-
ments among these n argument positions. Continuing the above example:

h: f[1] one argument is specified, so h is a dyad



e: f[;2] two of three argument positions, one
unspecified, makes e a dyad

Note that if all argument positions are unspecified the resulting function is indistin-
guishable from f. See Projection; Fixing Function Arguments in the chapter Func-

tions.

Error Reports
Valence Error if the function is called with too many arguments.

K Reference Manual 6: Amend, Index, Apply and Assign 147



Execute
d[s]

Arguments
The argument d is any dictionary and the argument s is a character string.
Definition

d[s] isidenticaltod @ s (see Value/Execute in the chapter Verbs). Note that
. s isidenticalto d[s] .

Error Reports
See Item Index.

148



Index
dljsk;..]
afl]
Description
In the first case select items-at-depth from the list or dictionary d, as given by the
index list (7; k;..) . In the second case select all of d.
Argument

For the first expression, the argument d is like the left argument of the verb form of
Index and the listj ; k;...) is like the right argument. The second case is like that
verb form with d as left argument and nil as right argument.

There must be at least one semicolon in the index listk;..) or this is Item
Index.

Definition

d[] isidenticaltod . n,orequivalentlyde!#d for listsandde!d for dic-
tionaries;

d[j:;k] isequivalentta . (j;k) ;

d[j;k;1] isequivalentta . (j;k;1) ,and so on.
Facts about Index

d[] is alist of values of all entries in a dictionary d

For atoms jand ki[j; k] isidentical tod[j] [k] , and this extends to longer
index lists.

Error Reports
Index Error if any atom in 5 ; k; ...) is not a valid index to the item-at-depth in d.

Type Error if any atom of 5 ; k;...) is not an integer, symbol or nil.

K Reference Manual 6: Amend, Index, Apply and Assign 149



ltem Amend

v[i] : vy
vii] f: vy
v[i] f:

Description

Modify the entries of the dictionary or items of the list whose name appears in
place of v at indices i with f and, if present, the atom or list y.

Arguments

The first argument v is a place holder for the name of an existing variable. The
value of that variable is like the first argument of the verb form of Amend Item,
except that a handle is not permitted. The second argument i is either a nonnegative
integer atom or list, or a symbol atom or list. The argument f is any verb; the second
of the above expressions corresponds to the dyadic case of f and the third to the
monadic case. The argument vy, if present, is any atom or list; i and y must be
conformable in the sense described for the verb form of Amend Item, and if f is
present, items-at-depth in y corresponding to paths in i must be valid right argu-
ments of f.

Definition

In every use of ltem Amend, the name of an existing object appears in place of v.
This name must be a valid entry in the current directory (see the introductory re-
marks to this chapter). The value of that variable serves as the first argument d in

the verb form of Amend Item. The remaining arguments i, f, and y serve in their
same roles as in the verb form. For example:

a: 3 4#!12

0 11)
(“ab;"cde") replace item 1 with( “ab; "cde")

"Cde ")
8 9 10 11)

150



al0] +: 10 add 10 to item O
a

(10 11 12 13

(~ab

"cde")

8 9 10 11)

al[2] -: negate item 2
a

(10 11 12 13

(~ab

"cde")

-8 -9 -10 -11)

In all cases the variable whose name appears in place of v is modified, and in that
sense these forms of Item Amend are like the verb form with a handle first argu-
ment holding this name. However, the result of this form consists only of the new
values of the modified or replaced items; it is neither the handle nor the entire
modified value of the verb form. For example:

a: 1 2 3 4
r: af[0 2] +: 100 r is the result of the Item Amend
a
101 2 103 4 the new a
r
101 103 r holds only the changed items

The last paragraph in the definition of the previous form of Amend applies equally
to this form of Amend.

Error Reports

Index Error if any atom of the index i is not a valid index of the object being
modified.

Length Error if the index i and the last argument y are not conformable.

Type Error if any atom of the index i is not an integer, symbol or nil.

K Reference Manual 6: Amend, Index, Apply and Assign 151



Item Index
dli]
Arguments

The argument d is any list and the argument i is a nonnegative integer atom or list,
or the argument d is any dictionary and the argument i is a symbol atom or list.

Definition
d[i] isidenticaltod @ i . See Index Item in the chapter Verbs.

Error Reports
Index Error if any atom of i is not a valid index of d.
Rank Error if d is an atom.

Type Error if any atom of the index i is not an integer, symbol or nil (or character
string; see Execute).

152



Apply Monad
fli]
Arguments
f is a monadic function and i is a proper argument of f.

Definition
f[i] evaluates the monad f with argument i.

K Reference Manual 6: Amend, Index, Apply and Assign 153



154



CHAPTER 7

NCTIONS

A function can be defined by entering its defining expressions in order from left to
right separated by semicolons, with a left bragdd the left of the first expression
and a right brace}{) to the right of the last expression. The first expression may be
preceded by a bracketed list of names, asih; n2;..; n3], which is the argu-
ment list when the function is applied. For example, if the fundtionerest is
defined as follows:

interest: { [p;r;t] p * r * t }

then when it is called it will have three arguments, which are the valugs for
andt, in that order, as ininterest [100;0.075;1] . An empty argument
list, i.e. [ ], is used for a niladic function, i.e. one with no arguments. If there is no
argument list then the following default arguments are assumed:

« if the name z appears in the expression then the argument ligt; z] is
assumed, no matter whether x or y appears or not;

* if y is present but z is not, the argument [ist; y] is assumed,;
* if X is present but y and z are not, the argument kst is assumed,;
* if X, y and z are not present, the argument[lists assumed.

The value of the right-most expression is the default explicit result of the function

(see Return in the chapter Controls and Debugging for overriding the default). Func-
tions always have explicit results. When there is nothing between the right-most
semicolon and the right brace, or just blank space, the result of the function is nil.

K Reference Manual 155



For example, the result of [] for the niladf:{a: 10; b: 20; a + b}
will be 30 because the default result linesis+ b , but the result oty [] for the
nilad g: {a: 10; b: 20; a + b;} will be nil because the result line is empty.

Projection; Fixing Function Arguments

156

Suppose that at a certain point in an application the function Plus is always called
with the same fixed left argument, as3ina-b . This occurrence can be viewed as
the monadic functior3+x applied toa-b . The expressiors+ denotes that
monadic function, and the above expression can be writt¢a-@s[a-b] . It is

said of the sub-expressiarz+) in (3+) [a-b] that the left argument of Plus is
fixed , or that 3 is the fixed left argument of Plus. In addition, the monadic
function 3+ is called aprojection of + onto the left argument

It is not necessary for fixed arguments to be constant, but in most uses they tend to
be fixed relative to other arguments. For example, consider an application of the
adverb Each Right to a dyadic function f, kef / : y . When evaluated, the func-

tion f is appliediy times, each time with the same left argument x but a different
right argument, the ith itenyy [1] for every index i. The value of x may change
from one evaluation ok f/:y to the next, but during any particular evaluation

fis applied with a fixed left argument x and a varying right argument. Note that the
functionality of x £/:y can be obtained by fixing the left argument x to produce

a monadic function, which is expressed @asx; ] , and applying Each to that
monadic function with argumenty,asfinix; ] 'y . Thatis,x £/:yis f[x;]"'y.

The previous example suggests how Each Right and Each Left can be generalized
to functions of three or more arguments so that Each is applied item-wise to some
arguments but not others. For example, if f has four arguments a, b,cand d and fis
to be applied to all of a and c with each item of b and d, then fix arguments a and
¢ and apply Each to the resulting dyadic function, as in either of the following two
expressions:

b fla;;c;]1'd
flar;c;]'[b;d]

It is possible to fix arguments using function expressions, but less convenient. The
first and third arguments of the above function f are fixed in the expression
{fla;x;c;y]} , and the above application of Each can now be written as ei-
ther of the following:



b{fla;x;c;yl}'d
{flasx;cryll}'[b;d]

It is not possible to fix the right argument of Plus in the way that the left argument
was fixed above. That ig,3 +) is valid, but (+ 3) is not. However,+[3; ]

also expresses fixing the left argument, and the analogous expression for the right
argument,+[; 3] , is a valid expression for fixing the right argument.

When a function with fixed arguments is assigned to a name, the fixed arguments
maintain their current values in the object named on the left. For example, sup-
pose:

A: 3 Ais assigned 3

and f is defined as follows:

f: A+ fis assigned Plus with fixed left argument
f5 evaluate f 5
8
A: 6 change A
£ 5
8 fis unchanged; it does not use the new value of A
(A +) 5
11 the fixed left argument in A + is the new value of A

Just as when the adverb Over is applied to f and the resulting function is called f-
Over, a projection of f is called f-Onto, as in f-Onto the second and fourth argu-
ments forf [ ; a; ; b]. See Apply in the chapter Amend, Index, Apply and Assign.

Localization

A name that begins with a dot is calledadsolute referent and one that begins
with an alphabetic character is callecelative referent

All relative referents assigned a value via single colon Amend of thesformin

a function expression are local names. The names of the arguments are also local.
In fact, local names are strictly local, in that their values cannot be seen outside the
function expression or inside any function called within the function expression.

K Reference Manual 7: Functions 157



Use double colon Amend or the handle case of Amend, Amend Item or ltem Amend
to assign global variables with relative referents within function expressions. In the
case of double colon assignment, the relative referent will be resolved in the direc-
tory that was the current directory when the function expression was defined. In the
cases where a handle is used, the relative referent that is the contents of the handle
will be resolved at run-time, in the directory that is current when the function is
called.

Global variables identified by absolute referents can be assigned values by any of
the various assignment methods within function expressions, i.e. single and double
colon Amend and any of the handle cases.

Local Functions

158

Suppose that the function g is defined within the body of another function f and
uses the variable x in its definition, where x is local to f. Then x is a constant in g,
not a variable, and its value is the current one when g is defined. For example, if:

f:{b:3; g:{b}; b:4d; gll}

The value of f is the value of the local function g, which turns out to be 3, the
value of b when g is defined, not the subsequent value 4.

£l



CHAPTER 8

TRIBUTES

An attribute is a global variable with a special association to another global vari-
able. Attributes are eith@rimitive, i.e. part of the K language definition, or user-
defined. The association between a variable and one of its attributes is expressed in
their names. For example, for the variable named v its format attribute is named
v..f.

Theattribute dictionaryof v , denoted byv . , contains all attributes of the vari-

able v. Since attributes themselves are true variables they also have attributes, and
these in turn have attributes themselves, and so on. In practice, however, it is rare to
go beyond attributes of attributes of ordinary variables. And attribute dictionaries,
which are also true variables, do not themselves have attributes.

The name of an attribute of a variable is formed by the variable name, followed by
a dot to signify the attribute dictionary of the variable, followed by another dot to
signify an entry in that dictionary, followed by the attribute name. For example,
v..f isthe format attribute of v.

Primitive attributes have special effects on the variables they modify defined by
the K language (see the definitions below), while user-defined attributes have user-
defined meanings. Typically, a user-defined attribute would be auxiliary informa-
tion about a directory that organizationally does not belong among the directory
entries. For example, a directory might represent a view of a relational table with
its entries as fields, and the name of the view’s base table(s) could be a user-de-
fined attribute of the view.

Primitive attributes have implicit default values, but not explicit ones. That is, ref-
erencing an attribute for a variable when that attribute has not been given a value
will not necessarily give the default value.

K Reference Manual 159



Arrangement

160

V..a

If v is a dictionary that is classified asorm, thenv. .a is asymbol list whose
atoms are entries in v, such that the arrangement of the atoms. i specifies

the arrangement of the entries on the screen when v is displayed. The depths of the
atoms inv. .a indicate whether the corresponding entries are within vertical or
horizontal sections of the display. For example:

\d p create a dictionary p, and then create six entries
a: 10 + b: 10 + ¢c: 10 + d: 10 + e: 10 + f£: 10

\d * go up one level

p..c: “form make p a form

"show $ 'p display it

At this point the entries of p are displayed vertically in what looks like random
order. (Actually, it is the order in which the variables were created.) To display
them vertically in the order a through f, set .a t0 "a'b c d e £ . To dis-

play them horizontally in that order, sét. .a to , "a'b c d e £ . The top-

level of p..a indicates vertical order (one list item), and the next level horizon-
tal (six items). To display a and b horizontally above c, d, e, and f horizontally,
setp..a to ("a'b; c'de f); the top level ofp..a indicates vertical
order (two items) and the next level horizontal (two items in one and four in the
other). And so on. The following figures show various arrangements of this form.

p..a: ab'cde' f p..a:, a b cde f

lx kp  KE]
a| Bl a B b[50 |40 d| 30 e| 20 f | 10
b | 50

c | 40

d | 30

e | 20

f




p..a:(ab; cde 1) p..a:(ab; c;(d; e f))

x .k.p | x| x .k.p ﬁil
al| &l B | 50 a| 60 b IR
c[40 4 JE [ 20 § [ 10 c | 40
e [ 20
d | 30
f [ 10

Background Color / Foreground Color
v..bg
v..fg

These attributes specify the background and foreground colors on the object v. The
foreground color applies to display of the object’s data, while the background color
applies to the region in which the data is displayed. Distinct colors are specified as
nonnegative integer atoms with at most 6 meaningful digits, arrangetyadb.

That is, if ¢ is such an integer atom then

100 100 100 wvs c

consists of three integers with values between 0 and 99 that depend only on the
right-most six digits of c. The first of the three integers specifies the intensity of red
in the resulting color, from none (0) to maximum intensity (99), the second speci-
fies the intensity of green, and the third, blue. For example, 990000 is pure red,
9900 is pure green, 99 is pure blue, and 990099 is purple formed from equal inten-
sities of red and blue. Also, 0 is black and 999999 is white.

Any integer ¢ can specify a color, and if its value is not between 0 and 999999 then
the residuec! 1000000 is used. For example, white can be specifiedias

The value of the color attribute can be an integer atom, which applies to every data
item on the screen, or an integer list, with (possibly) a different color value for each
data item, or a monadic function, whose argument is the value of the data item to

K Reference Manual 8: Attributes 161



be colored, or a niladic function. In the case of a function, the system variables
and i are available. These functions have access to any entry in the K-tree, but
cannot modify the value of v.

Class

V..C

This attribute classifies the format of the display of the associated variable v . The
meaningful values areform, “data, "chart, "plot, "button, ‘check,

and "radio . The default is data , with the following exception: the default
display class of a dictionary isform if the display class of any entry has been
specified, or if some entry is a dictionary whose default display clas&oism .

See the chapter Screen Displays for examples of the display classes.

Click / Double Click

v..k
v..kk

A mouse click event is said to occur on v when a mouse button is pressed while the
mouse cursor is in the data area of the screen display of v. A double click event
occurs when a second mouse click event on v occurs almost immediately after the
first. The click and double click attributes are character strings holding expressions
that are executed whenever click and double click events occur. Note that the click
attribute expression is executed on the first click in a double click sequence, but
not on the second click.

Dependency

162

v..d

The value of this attribute is a character vector holding the dependency definition
of the associated variable v . See the topic Dependencies in the chapter Terminol-
ogy . In principle, a dependency should not explicitly set the values of items on the
K-tree, but if v happens to be set while the value of d is executing, that setting

will not causev..d to execute again. Cycles in dependency relations are not
permitted, i.e. a variable cannot be dependent on itself.



Editable

V..€

This attribute specifies whether or not the data items of v on the screen can be
edited, with a O for no and a 1 for yes. The value of this attribute can be an integer
atom, which applies to every data item on the screen, or an integer list, with (possi-
bly) a different editable setting for each data item, or a monadic function, whose
argument is the value of the data item to be edited, or a niladic function. In the case
of a function, the system variables and i are available and the result indicates
whether or not the ith item (or item-at-depth) of the variable on the K-tree named

in v can be edited. These functions have access to any entry in the K-tree, but
cannot modify the value of v.

Format
v..f

The value of this attribute is a monadic function used to format the items or items-
at-depth in the screen display of the associated variable v . The result of the func-
tion should be a character vector. Typically, the function is a projection of the dy-
adic Format primitive function onto a fixed left argument, as in:

v..f: 8.2 $

or a more specialized formatting function, say for dates and time.

Help
v..h
The value of this attribute is a character vector holding descriptive information on
the associated variable v, typically for the user of an application. Eventually it will
be automatically displayed when the screen display of v has focus and some to-be-
defined action is taken.

K Reference Manual 8: Attributes 163



Label

v..1l

The value of this attribute is a character vector. For certain display formats, in the

absence of a value for this attribute the name of the associated variable is used to
label the object; for example, see the earlier figure showing various arrangements
of a form under the Arrangement attribute, where the names a through f are used.
If this attribute has a value then the text in the character vector is used as the label.

Option List

vV..O

Option Lists are symbol vectors that are associated with the radio display class. If v
is classified as radio then its display has n entries, where n is the count of
v. .o, and the label on the ith radio button is the text in the ith itemn.afo . The

value of v must be one of the entriesin .o ; when the ith radio button is
pressed the value of v becomes.o[i] .

Trigger

v..t

The value of this attribute is a character vector holding the trigger definition of the
associated variable v . See the topic Triggers in the chapter Terminology. The pur-
pose of triggers is to have side effects; a value produced by a trigger expression is
ignored. Note that if the value of v happens to be set while the triggert is
executing, that set will not cause . £ to execute again. Neither will a set of v

due to the evaluation of its dependency expressiani .

Update

164

V..U

The value of this attribute is a dyadic function used to produce the new value of v
when v is modified on the screen. When an item of v is changed on the screen, the
validation function (see Validation below) is first called by k to produce the poten-
tial new value — say y — of that item from the character string on the screen, and
then v is amended by k as follows:



In particular, the first argument of this attribute is the old value, and the second
argument is the new value.

An update function checks that the proposed value is valid, modifies that value or
sets other variables on the K-tree as appropriate, and if the proposed value is in-
valid can signal an error (see Signal in the chapter Controls and Debugging) to
abort the update.

When an update function is called, the left argument holds the value to be replaced
and the right argument holds the proposed new value. The system variables
and i are available, indicating which itemi (or item-at-depth) of which
variable v on the K-tree is to be updated.

The default value ofv. . u is ordinary assignment, i.e. in the case wkenu is
not specified, the amending expression is:

ST ovr 1ot vl

Everything done by an update function can also be done by a validation function,
but it is often useful to separate the activity of undoing the formatted character
string on the screen (validation) from updating the value of a variable, particularly
when other settings of the variable must also be monitored. Any explicit setting,
i.e. one that appears explicitly in the code, can be done using the same update
function in an explicit amend expression, as in:

0 ovy iy oveaur vl

Validation

v..g
The value of this attribute is a monadic function that is essentially an inverse to the
monadic function in the Format attribute of the associated variable v. Its argument
is a character vector and its result is an appropriate item or item-at-depth in v.

When an item on the screen is modified this function is called with the contents of

that item as a character vector. A validation function should simply return the ap-

propriate value represented by the character string if the representation is valid,
and otherwise signal an error (see Signal in the chapter Controls and Debugging )
to abort the change.

The default value of the validation attribute is the dyadic primitive function Form
with the left argument appropriate to the data type of v.

K Reference Manual 8: Attributes 165



Width / Height

166

V..X

V..VY

The values of these attributes are the minimum width and height of the object v on
the screen, where the units of length are, respectively, the average character width
and average character height of the data font (see the operating system appendices
in the K User Manual for the ways in which the data font can be specified). The
settings of these attributes on a form will be ignored if they are inconsistent with
the sizes of the entries in the form.



CHAPTER 9

ITIONALS

Conditional Evaluation
:[cond; true; false]
:[condl;truel; cond2;true2; ..; condN;trueN; false]

The first expression is the simplest form of conditional evaluation. All three of
cond, true, andfalse denote expressions. If the result ©énd is a non-
zero integer, the conditional evaluation is the result efie , but if the result of
cond Iis 0, the conditional evaluation is the resultefl se .

The second expression above denotes the general form of conditional evaluation.
If the result ofcond1 is a non-zero integer, the conditional evaluation is the result
of truel . Otherwise, if the result otond2 is a non-zero integer, the condi-
tional evaluation is the result afrue2 . And so on, until finally, if the result of
condN is a non-zero integer, the conditional evaluation is the resuttrafeN,

but if the result ofcondN is 0, the conditional evaluation is the resultfef1 se.

Note that the meanings of the expressions in a conditional evaluation alternate
between conditions and conditionally executed expressions. The result of a condi-
tional evaluation is the result of the conditionally executed expression whose con-
dition is true, or nil if all conditions are false.

Error Reports

Type Error if any of the condition statements do not have integer atom values.

K Reference Manual 167



Do

168

do[count; expression]
do[count; expressionl;..; expressionN]

The effect of the first Do statement is to execute the expressiant times,
while in the second case the expression list is executedt times. For example:

i:0
do[5; i+: 1]
i
5
As with function expressions and conditional evaluation, a list of expressions is

executed from left-to-right, or top-to-bottom if the expressions are on separate lines.
For example, the following Do statements are equivalent:

doln; fix;vyl; glx;vy:;z]]

and
do[n
fix;v]
glx;yizl]

Do statements do not have results, or rather, their results are always nil.

Error Reports
Type Error if thecount statement does not have an integer atom value.



if[condition; expression]
if[condition; expressionl;..; expressionN]

The effect of the If statement is to execute expressions conditionally depending on
the value of the condition expression. In the first casgressionis executed if the

value of the condition expression is not equal to 0. In the second case, the expres-
sion list is executed. For example:

a: 10 a: 10
if[3<4; a: 20] 1if[3>4; a: 20]
a a

20 10

Like the Do statement, a list of expressions is executed from left-to-right, or top-to-
bottom if the expressions are on separate lines. The If statements do not have re-
sults, or rather, their results are always nil.

Error Reports
Type Error if the condition statement does not have an integer atom value.

K Reference Manual 9: Conditionals 169



While

170

while[condition; expression]
while[condition; expressionl;..; expressionN]

The effect of the first While statement is to repeatedly execute the expression as
long as the condition has a nonzero value, while in the second case the expression
list is executed repeatedly. For example:

i:0
while[ 5 > 1i; 1+: 1]
i

5

Like the Do statement, a list of expressions is executed from left-to-right, or top-to-
bottom if the expressions are on separate lines. The While statements do not have
results, or rather, their results are always nil.

Error Reports

Type Error if the condition statement does not have an integer atom value.



CHAPTER 10

UGGING

The examples in this chapter assume that the error flag is setto 1, i.e.
\e 1
See Error Flag in the chapter Commands.

Abort
\

Abort causes the most recent suspended execution to be abandoned and its execu-
tion stack to be cleared. For example:

5 % 3 + "a"
type error
3 + "a"
>\ Prompt indicates a suspension; abort with
3 + 97 The prompt indicates no suspension; continue

Each \ clears one suspension; it is not possible to abort more than one suspension
at a time. For example, if a second error had occurred above, the situation would

have been:
>> 0\ Abort the most recent suspension
>\ One suspension remains; abort it

No suspensions remain

Abort can also be used to escape early from either loading or step-loading a K
script (see Load and Step in the chapter Commands).

K Reference Manual 171



Comment

/text

A comment may be placed at the end of a line by entering the slash character
followed by the text of the comment. The slash character must be preceded by a
space (or be the first character on a line) in order to denote a comment. Otherwise,
K will assume it denotes Over, or perhaps is part of Each Right. For example:

15 * 17 / This should be 255
255
/And it is!

Resume

172

X

Execution is suspended when a primitive function fails or a Stop control statement
is executed (see Stop / Trace). To resume execution after a failed primitive, enter
colon (:) followed by a value to serve as the value of that failed primitive. For
example:

4 4 3 + "a"
type error
4 4 3 + "a"
> : 3 + 97
100 100 100 100

A colon was entered on the next-to-last line, followed by the expre3sion ,
and execution resumed with 100 as the value of the failétat value became the
right argument tgt (with left argument 4), resulting in00 100 100 100 .

If execution is suspended because of a Stop control statement, nothing has failed; it
IS not necessary to supply a value in order to resume. In this case simply enter colon
alone on the input line to resume execution.



Return
X

When this expression is executed in the course of executing a function expression,
the effect is to end execution of that function and return with the result x. It is most
often used with If and Conditional Evaluation (see these topics in the chapter Con-
ditionals).

Signal

' x

The effect of Signal is to cause a K-like error from within a function expression, or
to signal one level up the execution stack in immediate execution mode.

Only 'x , and not quote alone, can be used in a function expression. When ex-
ecuted, the effect is to cause a K-like error to be reported in the K session, as
follows:

* X is a symbol or character vector containing the text of the error report;

* the function in which the signal occurred is treated like a primitive, in that
the line with the function application is displayed, not the line within the
function where' x occurs;

* the up-caretX/) is placed beneath the beginning of the function expression,
or the beginning of the function name, whichever appears in the displayed
line;

 execution is suspended and the prompts displayed;

* Resume (See Resume) can be used to resume execution, just as with a failed
primitive.
For example, here is a K error report for a failed primitive:
5 * -4.0 "~ 0.5

domain error
5* -4.0 ~ 0.5

AN

> : 4.0 ~ 0.5 Most likely, -4 should have been 4
10

K Reference Manual 10: Controls and Debugging 173



Compare this to an error report for a failed function expression:

SQRT:{:[ ~ x < 0; x ~ 0.5; ' ""domain error"]}
5 * SQRT -4.0

domain error

5 * SQRT -4.0

A

>

Resume with the valusQRT 4.0 :

> : SORT 4.0
10

The value of SQRT 4.0 was used as the right argument to Times (with left
argument 5) when execution resumed.

Both forms of Signal are valid in immediate execution mode. For example, sup-
pose thesQRT function had not signalled, but had simply been defined as:

SORT:{x ~ 0.5}
and the same expression as above had been executed:

5 * SQORT -4.0
domain error
{ x ~ 0.5}

A

>

At this point Resume could be used to continue execution from the point of error.
However, in debugging it is often helpful to see the actual application of the func-
tion, which does not appear in the error report. This can be accomplished by signal-
ling, which has the effect of passing the error up one level of the execution stack.
Continuing the example:

> ' "x*0.5 error"
x*0.5 error
5 * SQRT -4

A

\%

174



Execution can now be resumed from this point, or abandoned with Abort, or Signal
can be used again to signal up another levedQHT was a more complicated
function, then generating an error message'ltkeé0.5 error" to indicate the
reason for the suspension might be useful in the session log. However, it is often
not necessary, and all one wants to do is signal one level up. This can be done with
guote alone (there is no expression to its right), which has the same effect'as

or ' °, i.e. signalling with an empty error message.

Stop / Trace
\ x

When\ is placed to the left of an expression in a function expression, as if it were
a monadic function to be applied to the value of that expression, there are two
possible effects: immediately after the expression is evaluated during function ex-
ecution, either its value is displayed or execution of the function is halted. When
values are displayed the effect is callettace, and when execution is halted it is
called astop. Whether back-slashes cause traces or stops is controlled by the
execution monitor commancb , also called the break flag. It is also possible to
turn off stops and traces with this same command, and without removing the back-
slashes.

K Reference Manual 10: Controls and Debugging 175



176



CHAPTER 11

NICATION

The definitions of the primitive functions : and 4 : describe the default behav-

ior of interprocess communication among k processes. See the section Interprocess
Communication at the end of this chapter for how the default behavior can be
modified.

Load / Save Text File
0: £
f 0: x
0: x
Description
Load text files as string vectors, and save such string vectors as text files.

Arguments

The argument f is a symbol atom, character atom or character string, while x is a
character atom or string, or string vector.

Definition

In either of the first two cases f holds the name of a file, including any directory
path information. The monadic functioh: £ loads the file named in f into the
workspace as a string vector. Each byte in the file becomes a character in the result,
except for new-line characters, which have the effect of separating one character
string from the next.

K Reference Manual 177



178

The dyadic functionf 0: x saves the string vector x in the file named in f, where
x[0] becomes the first line in the file,[ 1] the second, and so on. New-line
characters are inserted between successive character vectors. Blanks at the end of
character strings are preserved. The result is always nil.

There is a special case of the dyadic function where f is the empty symbol, in
which case the contents of what would otherwise have been written to a file are
simply displayed in the session log.

Error Reports

Domain Error if the file named in f does not exist or cannot be found, in which
case an operating system message may be displayed as well.

Type Error if either f or x are not as described above.



Load Text File as Fields

(s;w) O0: £
(s;w) O0: (f;b;n)

Arguments

The right argument f is a symbol atom, character atom or character vector, while
the left argument is a two-item list whose first item s is a character vector and
second item w is an integer vector. The two vectors have the same count.

In the second case, the right argument is a three-item list where f is as described
above, and b and n are integers.

Definition

The argument f holds the name of a text file, including any directory path informa-
tion. Each line of this file is presumably a record of fixed-width fields. The purpose

of this function is to load the file into the workspace in such a way that each row is
partitioned into fields of widths and types specified by the left argument. The result

is a matrix whose items have count equal to the number of rows in the file, and
whose ith item holds the contents of the ith field.

The left argument s; w) specifies how the rows are to be partitioned. The first
item is a character vector and the second item is an integer vector. The two vectors
have the same count, which is the number of logical fields. The ith items of the
vectors describe the ith field. Each item in the character vector s is 6neof ",

where:

* T means integer field, which comes into K as an integer atom;

F means floating-point, which comes in as a floating-point atom;

C means character, which comes in as a character vector;

* S means symbol, which comes in as a symbol atom;

* blank means skip.
The ith item of the integer vector is the width (in characters) of the ith field.
For example, suppose the file named in f has the following two rows:

1050 1.234 abcdef ghi
234 1le50 gqw Xy

K Reference Manual 11: I/O and Communication 179



where there is a space at the end of the second row. Then:

("IFCS"; 7 9 10 3) 0: £
(1050 234
1.234 1le+50
("abcdef "
" ogqw ")
"ghi “xy)

Note the extra padding on the two character vectors. These could be loaded using
width 6 to avoid unnecessary padding, and skipping the 4 blanks that follow:

("IFC S"; 7 9 6 4 3) 0: £
(1050 234
1.234 1le+50
("abcdef"
" ggw ")
"ghi “xy)

The second form of dyadio: permits more flexible loading of exceptionally
large files. In this case, f is a file as previously described, b is an offset into that
file, and n is a length. Both b and n are in units of bytes.

Error Reports

Domain Error if the file named in f does not exist or cannot be found, in which
case an operating system message may be displayed as well.

Domain Error if the contents of a field specified as integer or floating-point field
are not a valid representation of that type of number.

Length Error if the length of the lines in the file are not all equal to the total of the
field widths in s, i.e+/s[1].

180



Load/Save K Data as K Files
1: £
f 1: x
Arguments

The argument f is a symbol atom or character vector, while x is any atom or list. In
the first case, Load K Data (monadic), f may also be a character atom.

Definition

In either case f holds the name of a file, including any directory path information.
The monadic functionl : £ loads that file into the workspace as a data object,
which is the result of the function. The dyadic functiénl : x saves the data x

in a file in the format of a K data object. Presumably the monadic function is
applied to a file that has been previously created with the dyadic function.

Note: The actual name of the file referred to by f may differ from the name held in
f, typically by the extent K on Unix systems and byl. on NT. For example, if f

is "/dir/prices" thenthe actual file name would belir/prices.K on

Unix, or /dir/prices.L on NT. The full file name including the suffix is per-
mitted for f, but is not portable.

Error Reports

Domain Error if the file named in f does not exist or cannot be found, in which
case an operating system message may be displayed as well.

Nonce Error if the file indicated by f exists, but does not contain valid K data.

Type Error if either f or x is not as described above.

K Reference Manual 11: /O and Communication 181



Load Binary File as Fields

182

(s;w) 1: £
(s;w) 1: (f;b;n)
c l: £forcl: (f;b;n)

S
S

Arguments

The right argument f is a symbol atom, character atom or character vector, while
the left argument is a two-item list whose first item s is a character vector and
second item w is an integer vector. The two vectors have the same count.

In the second case, the right argument is a three-item list where f is as described
above, and b and n are integers. In the third and fourth cases, c is a character. Only
the options'c" or"i"™ or"d" for c are allowed.

Definition

The argument f holds the name of a binary file, including any directory path infor-
mation. The length of the file, L, must be an integral multiple of W, the sum of the
field widths specified in the second item of the left argument. The purpose of this
function is to load the file into the session as a matrix whose items have count
equal tor.sw, and whose ith item holds the contents of the ith field.

The left argument specifies how the file is to be read. The first item s is a character
vector whose count is the number of logical fields, and whose items are one of
"cbsifd CS", each of which refers to a C language data type. Specifically:

* ¢ means one-byte character field, which comes into K as a character atom,;
* b means one-byte integer field, which comes into K as an integer atom;
* s means two-byte integer field, which comes into K as an integer atom;
* i means four-byte integer field, which comes into K as an integer atom;

» £ means four-byte floating-point field, which comes into K as a floating-
point atom;

d means eight-byte double, which comes in as a floating-point atom;

blank means skip;

C means string, which comes into K as a character string;

S means string, which comes in as a symbol atom.



The second item w is an integer vector of the same count as the character vector,
whose items are the widths of the fields. See the example in Load Text Files as
Fields.

In the special case of the left argument" , the entire file (including any null
bytes) is read into a character string whose length equals the number of bytes in the
file. If the left argument ig'i™ (or "d" ) the entire file is read into an integer
vector (or floating-point vector) with 4 (or 8) bytes to the item; the length of the file
must be a multiple of 4 (or 8).

The second form of dyadi¢: permits more flexible loading of exceptionally
large files. In this case, f is a file as previously described, b is an offset into that
file, and n is a length. Both b and n are in units of bytes.

Error Reports

Domain Error if the file named in f does not exist or cannot be found, in which case
an operating system message may be displayed as well.

Domain Error if the contents of a floating-point field are not a valid representation
of that type of number.

Length Error if the length of the file is not an integral multiple of the sum of the
field widths in s, i.e.+/s[1] .

K Reference Manual 11: I/O and Communication 183



Copy K Data from K File

184

2: f
Arguments

The argument f is a symbol atom, character atom or character vector.

Definition

The argument f holds the name of a file, including any directory path information.
Presumably f has been previously created with the Save K Data variation of dy-
adic1:. Monadic 2: copies f into the workspace as a data object, which is the
result of the function. The significant difference between this function and monadic
1: (Load K Data) is that in the latter case the file is actually mapped rather than

copied, and therefore certain operations on the contained data are restricted. See
also the section Load/Save K Data as K Files.

Note: The actual name of the file referred to by f may differ from the name held in
f, typically by the extent K on Unix systems and byl. on NT. For example, if f

is "/dir/prices" thenthe actual file name would belir/prices.K on

Unix, or /dir/prices.L on NT. The full file name including the suffix is per-
mitted for f, but is not portable.

Error Reports

Domain Error if the file named in f does not exist or canno t be found, in which
case an operating system message may be displayed as well.

Nonce Error if the file indicated by f exists, but does not contain valid K data.



Link Object Code
f 2: (e;t)
Arguments
The argument f is a character vector, e is a character vector, and t is an integer.

Description
Use compiled code like defined functions.

Definition

This function links the object file named in f into the K process. The name of this
file and the way it is created varies with the host operating system; see the K User
Manual. The character string e holds the name of a function in the object file to be
made into a K function. The result is that K function, which is usually assigned to
a name in the K session for future use. The non-negative integer t is the number of
formal parameters declared for the external function. The valence of the resulting
K function is also t.

The external function described by string e must have return type and parameters
which conform to the internal K data type, as specified in the interface description
appropriate to the programming language and operating system in which the func-
tion is written and compiled.

Error Reports

Domain Error if the file named in f does not exist or cannot be found, or if the
function or module e cannot be located within f. In these cases, an operating sys-
tem message may be displayed as well.

Type Error if any of f, e and t are not as described above.

K Reference Manual 11: I/O and Communication 185



Communication Handle

186

3: (n;p)
Arguments

The first item of the argument, n, is a symbol atom and the second item, p, is an
integer atom.

Description
Identify a communication partner.

Definition

The symbol n holds the name of the machine and the integer p is the communica-
tion port number of another K process, presumably one with which this one wants
to establish communication. The result is an integer atom, which is the communi-
cation handle to be used as a left argument to Remote Get and Remote Set. (The
pair (n;p) can also be used as a left argument in these cases.)

The symbol n may be the empty symbpin which case the machine is assumed to

be the local host. In other words, the communication partner to be identified is a K
process running on the same machine. Four number internet protocol (IP) addresses
in the form~"999.999.999.999" may also be used for n.

Whenever a message is received from a partner, the system vasiahtads the
communication handle of that partner. Consequently, only the partner who initiates
the communication may need to use this function: if the first message is a remote
set of a global variable which has a trigger, the trigger can inspec¢b get the
communication handle of the new partner.

The communication port number p is established in various ways, depending on
the host operating system. See the section Interprocess Communication and the K
User Manual.

Error Reports
Domain Error if the partner identified by the pait; p) is not available.

Type Error if n or p is not as described as above.



Close Handle
3: h
Arguments
The argument h is an integer atom.

Description
End communication with this partner.

Definition
The argument h is a communication handle, e.g. the resaili ¢fi; p) or avalue
of w. The effectis to close this communication channel.

Error Reports
Domain Error if the argument is not an active communication handle.

Type Error if h is not an integer atom.

K Reference Manual 11: /O and Communication 187



Remote Set

188

t 3: x
Arguments

The argument t, which identifies another K process, is described in Communica-
tion Handle. The symbal is also allowed for t. The argument x can be any atom
or list.

Description
Set a value in another process.

Definition

Assume for now that t is not For convenience the process in which these expres-
sions are being executed and the process identified by t will be referred to as the
current process and the other process, respectively. Also, the right argument is some-
times called aset messagend it is said that a set message is sent to the other
process.

Expressions are executed in another process for one of two purposes, either to set a
value in the other process or to get a value from the other process. If the purpose is
to set a value, as it is for Remote Set, then the message is sent asynchronously. That
is, execution oft 3: x completes immediately, even though the message may
still be on its way or is still being evaluated in the other process. In the absence of
a message filtetm. s in the other process (see Interprocess Communication),
when the message x is received it will be processed by the function

{:[4:%x; .x; .[.;x]}

In effect, x can be a valid argument of Value/Execute, or a two-item list whose first
(second) item is a valid left (right) argument to Index or Apply, or a three-item or
four-item list that corresponds to a valid argument list to Amend. The only restric-
tion is that a function must be a primitive function or a primitive derived function.
Even though all such messages will be executed in the other process, the only
effective ones are those that set a value, suchaag+3" or (“a; ();:;5) .

Whentis® then xis a character string holding an operating system command, and
the effect of this function to have the command executed.

The result of sending a set message is always nil.



Error Reports
Domain Error if the left argument t is an invalid communication handle, or if valid,
the partner identified by t is not available.

An error can occur in the other process.

K Reference Manual 11: I/O and Communication 189



Internal Data Type
4: x
Argument
The argument is any atom or list.
Definition

The result is the data type of the argument x, as an integer. Data types are as tabu-
lated below.

Data Object Type
Integer Atom

1
Floating-point Atom 2
Character atom 3
Symbol Atom 4

Integer Vector -1
Floating-point Vector -2
Character Vector -3
Symbol Vector -4

Other List 0
Dictionary
Nil 6

Function 7

190



Remote Get
t 4: x
Arguments

The argument t, which identifies another K process, is described in Communica-
tion Handle. The symbal is also allowed for t. The argument x can be any atom
or list.

Description
Get a value from another process.

Definition

Assume for now that t is not For convenience the process in which these expres-
sions are being executed and the process identified by t will be referred to as the
current process and the other process, respectively. Also, the right argument is called
a get messagand it is said that a get message is sent to the other process.

Expressions are executed in another process for one of two purposes, either to set a
value in the other process or to get a value from the other process. If the purpose is
to get a value, as it is for Remote Get, then the message is sent synchronously;
executionoft 4: x does not complete until the message has been received, pro-
cessed, and sent back by the other process, and finally received by the current
process and made the resultiof4: x . In the absence of a message filter. g

in the other process (see Interprocess Communication), when the message x is
received it will be processed by the same function as set messages (see Remote
Set), and therefore x can have any of the forms for set messages. However, the
effective get messages are not the same as set messages, but instead those that ge
values from the other process, such asor (a; !'10) .

When tis® then x is a character string holding an operating system command, and
the effect of this function to have the command executed. Since the operating sys-
tem is sent a get message, the result of the command is returned as a list of charac-
ter strings.

Error Reports

Domain Error if the left argument t is an invalid communication handle, or if valid,
the partner identified by t is not available.

Domain Error if the other process cannot return a result for this right argument.

K Reference Manual 11: /O and Communication 191



An error can occur in the other process.

192



Executable Form
5: x
Argument
The argument x is any atom or list.

Description
Give the character vector form of the default display of the argument.

With the exception of expressions that end in certain forms of Amend (see the
chapter Amend, Index, Apply, and Assign), whenever an expression is typed in a
K-session its value is displayed. That display can be captured by applying

the expression. The result is a character vector containing the display; new-line
characters are used when the display requires more than one line. The Execute
primitive can be applied to the result to reproduce the value. Consequently, this
primitive is useful for capturing complicated constants in script files. If ¢ is such a
constant, simply write5: ¢ to atext file with 0: and copy that text file into the

script file.

K Reference Manual 11: I/O and Communication 193



Synchronized File Append

194

f 5: ¢

Arguments and Result

The left argument f is a symbol atom, character atom or character vector, and the
right argument c is a general list. The result is an integer atom.

Description

The left argument f holds the name of a file createdtby : b for some K ob-
ject b that is a general list. The effect of this function is to append the general list ¢
to that file. The result is the count of the list in that file after the append takes place.

If the file named in f does not exist then this function is identicat to: c,
except that the result is the count of c.

In all cases, execution of this function does not complete until the updated file is
actually written to disk.



Interprocess Communication

A K server process is created usingtiecommand line option. For example, the
following starts a server at port number 1234:

k -1 1234

(See the K User Manual for more information.) Production applications often need
ways to monitor clients connecting to servers and the messages clients send. These
facilities are provided by the contents of the root directarywhich is present in

every k session.

Authorization Vector
.m.u

The symbol vectorm.u contains the names of users that are permitted to connect
to the process in whichm.u is defined.

Closed Connection Callback
.m.C

The character stringm. c is automatically executed when the connection to an-
other process is broken.

Message Filters

.m.g

.m.s

Message filters provide the means to monitor messages received from other pro-
cesses. In the discussion below a get message will always mean one sent to this
process by way of :, and a set message will always mean one sent by way. of

The message filterm.g applies to get messages and is called the get message
filter, while .m.s applies to set messages and is called the set message filter. The
message filters replace the default message evaluation functions. Both filters are
monadic functions which are automatically evaluated whenever a message of the
appropriate type arrives. The argument to a message filter is always the entire mes-
sage, i.e. the entire right argument®f or 4:, no matter what form that argu-

ment takes. The result of the get message filter is returned to the process that sent
the message; the set message filter has no meaningful result.

K Reference Manual 11: I/O and Communication 195



196

Message filters have two general uses. First of all, they permit any form of message
to be sent, whereas the default message evaluation functions fail in the general
case. Secondly, whilem.u allows only authorized users to send messages to a
process, not all authorized users are necessarily the same; often some can send
messages of particular forms that others cannot. Message filters provide the means
to monitor the messages of authorized users.

Synchronous Connection Filter
.m.h

This message filter applies to general synchronous interprocess communication
provided by the-h listening port option (see the K User Manual). It is somewhat
similar to the get message filtem. g, but the communication partner (i.e., the
client) need not be another K process. The argument to is the data received

from the partner, as a character array. As longrash returns nil, more data is
read, in each instance becoming the next argument to the filter. When the return
value is non-nil, it is sent back to the client, the current connection is closed, and
the -h port returns to its previous listening state.

When.m.h is not defined, the default behavior is to echo all received data back to
the client.



CHAPTER 12

MMANDS

Commands are statements that display and set K system parameters, load source
code, monitor and control execution, and send non-K commands to the host oper-
ating system for execution. Commands do not have explicit results, cannot be part
of expressions, and cannot be directly executed within function expressions. How-
ever, commands can be executed indirectly by way of the Value/Execute primitive
function.

Adverbs
\ v
Online help for adverbs.

Assignment, Functions, Control
\:
Online help for assignment, functions, and control statements.

Attributes
\.

This command causes a summary of all primitive attributes and their meanings to
be displayed in the session log.

K Reference Manual 197



Break Flag
\b [character]
The settings of this command distinguish whether all Stop / Trace commands mean
stop (\b s), trace (\b t ), or have no effect \b n). If a character is not
present, the current setting is displayed.

Commands
\
This command causes a summary of all commands to be displayed in the session
log.

Console Flag
\c boolean

This flag controls activation of the user console. Wkeno is executed, the con-

sole is closed. If there are no current communication partners nor active K graphi-
cal objects associated with the session, then the parent K process is terminated. If
the session remains active after the console is closed, and a signal or error condi-
tion arises which requires console input, then the console reappears (see Error Flag).

If \c 1 is executed while the console is down, the console reappears. Otherwise,
the command has no effect. The console may also be retrieved from any K graphi-
cal object associated with the session by tygiagr 1 -K> from within the object.

Data and I/O Verbs
\ O
Online help for data representation and 1/O verbs.

Directory
\d [name]
The directory command is used to specify the current directory to be the one named
in name, or display the name of the current directorydfme is not present. The
significance of the current directory is that all relative names that are assigned
values will be relative to the current directory. This makes it convenient when
writing utility programs; simply set the current directory in the utility script to the
one in which the utilities will reside in the first line of the utility script, and then

198



relative names can be used instead of fully qualified ones from that point on. Use
the absolute name of the utility directory when setting the current directory so that
the utility can be properly loaded from anywhere within an application script.

As a convenience, if or ~ appears in place atame , then the parent or attribute
directory of the current directory, respectively, becomes the new current directory.

The default current directory at the beginning of the K session is

The setting of\d is overridden by the setting of the system variakle. As a
consequence, if a script is loaded while an expression is executing, any settings of
\d in that script will not take effect.

Directory Entries
\v [directory]
A list of names of all global variables ili rectory is displayed, or the current
directory if di rectory is not present, or the parent or attribute directory of the
current directory ifdi rectory is” or ~ , respectively.

Error Flag
\e [boolean]
The debug flag controls the behavior of the interactive environment in response to
an error in a primitive function or a signal in a defined function. The default behav-
ior, which occurs when the setting is 0, is to report the error or signal in the interac-
tive session and wait, unsuspended, for the next input. When the setting is 1, which
is assumed for the descriptions in the chapter Controls and Debugging, the error is
reported or the signal occurs, as before, but execution is suspended. In this case,
the context of the interactive session is the same as that existing at the time of the
error or signal.

If no boolean setting is present, the current setting of the error flag is displayed.
Exit

A\
End the K session.

K Reference Manual 12: Commands 199



Interrupt
<ctrl-C>

Interrupt execution of a running K application.

Invalid Values
\i [name]
A list of names of all global variables whose dependency definitions explicitly
refer to the global variable namedname , i.e. all global variables that depend
directly on the named global variable.ntime is not present, a list of all currently
invalid names is displayed, i.e. all names whose dependency expressions will be
evaluated the next time they are referenced.

Load
\1 file

The source code of applications and utilities is maintained in one or more files
called scripts. In order to run an application, its scripts must be loaded after a K
process is started. The effect of this command is to load the runtime program
file.kr, or if that file does not exist, the scrifiti 1e . k .

Even though the current directory can be set in a script file and has the expected
effect on subsequent definitions in that file, once the load is complete the current
directory is automatically reset to the one when the load command was executed.

OS Command
\ text

When the text following the back-slash is not the text of one of the other K com-
mands, it is passed along to the operating system for evaluation.

Print Precision
\p [digits]
Print precision is the maximum number of decimal digits that can appear in the

default format of a floating-point numberdf gi t s is absent, the current value is
printed out. Otherwise, the print precision is reset to the value of that constant. The

200



defaultis 7, and the valid settings are the integers 0 throughd®gft s has any
other value then the setting is left unchanged and the current value is displayed. A
value of 0 indicates that all available digits should be used in the display.

Print Precision affects values typed by K in the session log and results of the primi-
tive monadic Format function.

Random Seed
\r [seed]

The random seed is the seed of the random number generator used, for example, in
the library functions Deal, Random Selection and Random Probability (see Draw
in the chapter System Functions). Its purpose is to permit multiple experiments to
be run on the same random sequence, by re-initializing the random sequence at the
beginning of each experiment, and optionally resetting the random seed. In the
absence of the constant signified byed , the random sequence is re-initialized

with the current value of the random seed, which is printed out. Otherwise, the
random sequence is re-initialized with random seed reset to the value of that con-
stant, which must be an integer.

Runtime Program
\kr file

The scriptfile.k in the current OS directory is converted into a runtime
program file.kr. Such programs are compiled and encoded K code, and may
be loaded into both the developer and runtime versions of K (see Load). Note that
unencoded scripts of the formile.k may not be loaded into runtime K.

Set Timer
\t [digits]
Set the timer to the number of seconds given by the integer representigilis,
or display the current setting tii gits is not present. If the setting is a positive
integer n then the global variahle is assigned the value oft every n seconds;
a trigger on. t will then be executed every n seconds. No assignments of
occur if the setting is 0, the default.

K Reference Manual 12: Commands 201



Step
\s file

The scriptfile. k is step-wise loaded line-by-line, using the Return key as the
load proceeds. The load may be aborted at any time by entering the back-slash
character\ (see Abort in the chapter Controls and Debugging).

System Names
\

This command causes a summary of the meanings of all system functions and
system variables to be displayed in the session log.

Time
\t expression

The execution time of the expression, in milliseconds, will be printed out when
execution completes.

\t +/!110000
16

\t do[100;+/!10000]
750

Verbs
\+
Online help for verbs.

Workspace Size

\w
Displays the space used, space allocated, and space allocated to mapped files.

202



CHAPTER 13

ARIABLES

System variables are special global variables whose meanings and values are deter-
mined by the K process. System variables are always available, and their names,
which all begin with underscore (), never need to be qualified with path informa-

tion.

Three of the system variables are related to amending global variables. Whenever
a global variable is being amended the system variakles v and i are
automatically set to the directory of which the global variable is an entry, the entry
itself, and the indices of the items-at-depth being changed. These three values are
available within the function argument of Amend and Amend Item and the Update
and Validation Attributes.

Current Directory
d
The value of d, like the result of the commandi , is the current directory, i.e.
the directory in which relative names are resolved. The value is a symbol holding
the name of the directory, i.e. a handle. This value is automatically set to the direc-
tory whose entry is being modified by the current Amend or Amend Item.

Current Global Set

v

The value of v is a symbol holding the absolute name of the global variable
currently being modified by Amend or Amend Item.

K Reference Manual 203



Current Time
t
The value is the current time, measured in seconds from some initial point, as a
nonnegative integer atom. The base time, i.e. _tis 0, is 12:00 AM, January 1, 2035.

See GMT Time Stamp, Local Time Stamp, Dates from Julian Days and Julian
Days from Dates in the chapter System Functions.

Host Process (Machine Name)
h

The name of the machine (as a symbol atom) on which the current K process is
running.

Host Process (Port)
p

The port number of the current K process, or 0 if no port was identified when the
process started.

Items Changed

1

The value of i is the atom or list of indices where the global variable named in
_v is currently being modified.

Message Source (Handle)
W

The value of w is the communication handle of the current message sent to this
process from another K process, or O if the source of the current message is the
console or screen.

Message Source (User)
u

The value of u is the name (as a symbol atom) of the user of the K process that
sent the current set message to this processjfahe source of the current mes-
sage is the console or screen.

204



Nil Value
n

The value of nil, which is the value of any unspecified list item. For example, the
first and third items of; 1 2 3; ) have values equal to nil.

Self Referent
£

A recursive function is one whose definition refers to itself. A simple example is
the factorial functionfac [n] , whose value for a positive integer n is the product
of the first n positive integers. Since this product equal§ac [n-1] , and since
fac[1] equals 1,fac can be defined by:

fac: {:[x>1; x * fac[x-1]; 1]}

Functions are data and in particular, do not have to be named. A question that then
arises is: how is an unnamed function referred to in a recursive function expres-
sion? The answer is: with the self referent system variahl&he factorial func-
tion can be redefined using by:

{:[x>1; x * f[x-1]; 1]}

Of course factorial can also be definedbyc: {*/ 1 + !x}.

K Reference Manual 13: System Variables 205



206



CHAPTER 14

NCTIONS

System functions have names that begin with underscore All system func-
tions are syntactically verbs. For example, applicationsief and bin can be
expressed in infix notation, e.g. in b and a bin b.

Binary Search

X bin y
X binl y
Arguments

In the case of bin, the left argumenik is any list without duplicate items and

in ascending order, i.e. x isidenticalto@ < x,and the right argumenty is any
atom or list. In the case ofbinl , both x and y can either be an integer vector
or floating-point vector, and otherwise x satisfies the other conditions of the left
argument of bin .

Description

Find y in x using binary search.

Definition

The functionx bin y is defined in the much the same way as same way as
x ? vy, exceptthat the restrictions on the left argument permit y to located in the
intervals(x[i-1], x[i]) ,and notjustidentical to an item of x. Consequently,
the result is the largest index i for whichthe ligtii-11; y; x[i]) isinsort

order, i.e. if<(x[1i-1]; vy; x[i]) is 0 1 2. Otherwise, the resultis 0 if
(y; *x) isinsortorder,andx if (*|x; vy) Iisinsortorder.

K Reference Manual 207



208

The restrictions on the left argument are required by the binary search algorithm
used in this function, which is more efficient than the general search algorithm
used in Find. For the sake of efficiency the restrictions are assumed to apply; the
function does not verify them. Consequently, the function will not fail if the restric-
tions do not apply, but the result will be meaningless.

x binl y isequivalenttox bin/: y wherever itis defined.

Error Reports
Rank Error ifx is an atom.



Delete Indices
x diy
Arguments
Either the left argument x is a list and the right argument y is integer, or the left
argument is a dictionary and the right argument is a symbol atom or vector.
Description
Delete itemsx [y] from X.
Definition
Theresultofx di y foralist x is x with itemsx [y] deleted. For example:

"abcdefghi" di 3 1 5
"aceghi"

In the case of a dictionary x, the result is x with the entry or entries named in y
deleted. For example:

\d

.k
a:2; b:3; c:"abc"; d:7 8
.k di "a “c

If yis a vector of entry names (e.g.: 'x ), usex di y to delete them all.

Error Reports

Index Error if an atom in the right argument is not a valid index of the left argu-
ment.

Rank Error if X is not a list or dictionary.

K Reference Manual 14: System Functions 209



Delete Value / Delete Value List

210

x dvy
x _dvl y
Arguments

In the case of dv , the right argument y is any list or atom, while farv1 the

right argument must be a list. In either case the left argument x is a list and the
result is a list whose count does not exceed.

Definition

Theresultofx dv y is x with any items that match y deleted. Since Match is
used, floating-point comparisons are subject to comparison tolerance.

For example:

3517 dv s
317 3

3517 dv1ls
517

In the example on the right, the ligt 5 is not an item of the lisB 5 1 7, so
nothing is deleted. The function dvl y islike x dv y, exceptthat every
item of y, not y itself, is deleted from x. That is, dvl y is equivalent to

x _dv/ y. Forexample:

3517 dvl 15
37

Error Reports
Rank Error if x is not a list.



Draw
x _draw y
Description
Make x random selections fromy with replacement if y is positive, from-y
without replacement if y is negative, or from the interya} 1) if y is O.
Arguments

The left argument x is a nonnegative integer atom or vector and the right argument
y is an integer atom. If y is negative thern x is less than or equal toy.

Definition
Assume for now that x is an integer. If y is positive the result is an integer list of

count x whose items are integers randomly selected from This function is
sometimes called Random Selection. For example:

5 draw 3 5 draw 7
1220 2 4 5 4 6 4

If y is negative the result is an integer list of count x whose items are distinct
integers randomly selected fromy . This function is sometimes called Deal, and
since the items of the result are distinct, x must be less than or egual feor

example:
4 draw -9 9 draw -9
350 4 5470236281

If y is O the result is a floating-point vector of count x whose items are distinct
numbers greater than or equal to 0 and less than 1, chosen from a uniform or rect-
angular distribution. This function is sometimes called Random Probability.

6 draw 0
0.3655 0.2888 0.2184 0.8171 0.693 0.6323

If X is a vector thenx draw y isidentical tox # (*/x) draw y inall
cases.

Error Reports
Length Error if y is negative and/x is greater thany .

K Reference Manual 14: System Functions 211



GMT Time / Local Time

212

_gtime x
_ltime x
Argument
The argument is an integer atom and the result is a two-item integer vector.

Description

Time from seconds.

Definition

Give the time produced by the current time system variablas a two-item inte-

ger vector, where the first item is yyyymmdd and the second is hhmmssme
gives GMT and 1time gives local time. For example:

_gtime t _ltime t
19951001 50000 19951001 O
_gtime O
20350101 0

The argument does not have to ke, but must represent time duration in seconds
starting at the same point in time as.

Error Reports
Type Error if the argument x is not an integer atom.



Integer from Character / Character from Integer
_ic x and ci x
Argument

In the case of ic, the argument is character, while fari the argument is inte-
ger. The result is identical in structure to the argument, but is integer when the
argument is character and character when the argument is integer.

Definition

Both icand ci are atom functions. In the case dfc, the result is just like the
argument except that every character atom in the argument is replaced by its ASCII
integer value in the result. In the case ofi, every integer atom in the argument
becomes the character in the result whose ASCII value is that integer modulo 256
(e, x ! 256).

Error Reports

Type Error if the argument ofic is not character or the argument efi is not
integer.

K Reference Manual 14: System Functions 213



Julian Day from Date / Date from Julian Day

214

_Jd x

dj x

Argument

The argument and result are integer atoms.

Definition

_jd gives a Julian day count for an integer argument of the form yyyymmadd, such

as the first item of the result of eithefitime or ltime,and dj produces a
date from a Julian day count.

These functions are compatible with , i.e.:

dj 0
20350101

In particular, since this date is a Monday, the day of the week for any tims:
"Mon Tues Wed Thur Fri Sat Sun @ (_ t%86400)!7

Error Reports
Type Error if the argument is not an integer atom.



Least Squares

x 1lsqy
Description

The least squares solution w of the linear equations (in conventional mathematical
notation)yw = x.

Arguments

The argument x is a floating-point vector or matrix and y is a floating-point matrix.
Since y is a floating-point matrix all its items are floating-point vectors of the same
count. That count must equal the count of a vector x or the count of every item of a
matrix X, and cannot be less than the count of y. Also, the matrix y must be non-
singular, i.e. the items must be linearly independent.

Definition

The items of y are considered to be the columns of the matrix. Consequently, for
any vector w of count equal to the count of y, the matrix-vector product yw is
yv*w . If w is a solution of the above equation thefy*w equals X, or equiva-
lently, the items of the vectox - +/y*w are all 0.0 (in practice, they are
approximately 0.0). If w is not a solution, then

+/(x = +/y*w) *2
is called the sum-of-squares measure of how close w is to a solution.

The equation may not have a solution when each column of y has more items than
y itself. However, if the matrix is non-singular, then there is a unique w for which
the sum of squares has the smallest possible value. Thatw issq vy .

Note that if the equation has a solution then ikis 1sqg y . For example:

(1 11.0;1 2 4.0)
12 3.0

X 1sqy

= % XK

0.5 0.6428571
+/y*w
1.142857 1.785714 3.071428

The vector w is not a solution, but is the least-squares solution.

K Reference Manual 14: System Functions 215



x 1lsqg y isidenticaltox 1sg\: y for a matrix x.

Error Reports
Domain Error if the matrix y is singular.

Type Error if either argument is not floating-point.

216



Math Functions
_abs x t0 _tanh x

Argument
The argument of every math function is numeric.

Definitions

Every math function is an atomic function. They are:

_abs x absolute value function, or magnitude function
_arccos x inverse cosine function

_arcsin x inverse sine function

_arctan x inverse tangent function

_cos X trigonometric cosine function

_cosh x hyperbolic cosine function

_exp x exponential functiom

_floor x the integer part of x as a floating-point whole number.
(This function does not use Comparison Tolerance. Compare with _ x .)
_log x natural logarithm function

_sin x trigonometric sine function

_sinh x hyperbolic sine function

_sdr x x-squared, i.e.x*2.0

_sgrt x square root function

_tan x trigonometric tangent function

_tanh x hyperbolic tangent function

The result of any math function is a floating-point atom or list.

Error Reports
Type Error if an atom argument x is not numeric.

Domain Error if an atom argument x is not in the domain of the function.

K Reference Manual 14: System Functions 217



Matrix Functions

x _dot y
x mul y
_inv x

Arguments

For the first function, x and y are conformable numeric lists. For the next two, they
are numeric matrices. (Some other numeric structures are legal, but of limited prac-
tical use.)

Definition
The first function is dot product, the second is matrix multiply, and the third is
matrix inverse. Dot product is simply the functieri*. Matrix multiply is the

function {x dot\: y}. Matrix inverse uses the system functiahsg to find
the inverse of a square matrix. For example:

2 3 4 dot 9 8 -2
34
A: (2 3 4; 1 2 3; 02 1)
B: (1 2; 5 =-2; 3 4)
A mul B
(29 14
20 10
13 0)
_inv A
(1.333333 -1.666667 -0.3333333
0.3333333 -0.6666667 0.6666667
-0.6666667 1.333333 -0.3333333)

Inverting a singular matrix results in a matrix filled with values.

Error Reports

Type Error if arguments are non-numeric, or if the argument forv is not a
matrix.

Length Error if the arguments fordot do not conform, or if the arguments for
_mul to not conform along the inner dimension. Also, length error if the argument
for inv is not a square matrix.

218



Membership / List Membership
X 1in 'y
x lin vy
Arguments
In the case of in, the left argument x is any list or atom and the result is an
integer atom, while for 1in the left argument must be a list and the result is an
integer list of the same count. In either case the right argument y is a list.
Description
Is X iny?
Definition
Theresultof in islisif x matches any item ofy, and O otherwise. Since Match
is used, floating-point comparisons are subject to comparison tolerance.

For example:

5 in 3 51 7
1

9 in 3 517
0

This function is similar to Find. Namelg in y is (y ? x) < # y.

The result of 1in is an integer list whose ith item is 1 #[i] matches any
item of y, and O otherwise. Thatis,Lin applies in to every item on the left
and is equivalenttac in\: y. For example:

59 1in 351 7
10

Error Reports
Domain Error if y is not a list.

K Reference Manual 14: System Functions 219



Scalar from Vector

220

X SV y
Arguments and Result

The left argument x is either a positive integer atom or vector, while the right
argument y is integer and if a list, its items must be conformable in the manner
described below. If both arguments are lists they must have the same count. The
result is integer.

Description
Evaluate y in the radices x.

Definition

Scalar from Vector computes the base value of a vector y in a number system with
radices x. An atom x paired with a list y is treated likie7) #x .

10 sv 12995
1995

2 sv1001
9

24 60 60 sv 1 3 25
3805

If the right argument is a matrix then the resultof sv y isavector with# * y

items whose ith itemx _sv y) [1] isidenticaltox sv y[;i] . The gen-

eral case can be seen from the following definition of this function, which is based
on the polynomial evaluation method called Horner’s method, and which for an
integer vector left argument is:

sv: {{z + v * x}/[0; x; v]}

The function{z + y * x} is atomic, and its first application in an evaluation
of sv is:

tl: {z + vy * x}[0; x[0]; yI[0]]

Since 0 andk [0] are atoms the resuttl is identical toy [0] in structure. The
next application is:

t2: {(z + vy * x}[tl; x[1]; vyI[1]1]



Sincex[1]isanatom,t1and y[1] mustbe conformable, and therefoyg 0]
and y [1] must be conformable. And so on. The items of y must be conformable
so that, for example, any Over for dyadic f applied to y, suely s is defined.

Error Reports
Domain Error if the left argument x is integer but not positive.

Length error if the arguments are both lists but their counts are different.
Type Error if either argument is not integer.

K Reference Manual 14: System Functions 221



String Match

222

X smy
Arguments and Result

The left argument x is a symbol, string, or list of symbols and/or strings. The right
argument y is similar. The result is a boolean list.

Description
Indicate whether a string in x matches one in y.
Definition

String Match is a string-atomic function that yields a 1 wherever a string in x matches
one iny, and 0 otherwise. Special wild-card characters may appear in strings of y:

* one or more:"b*t" matches"bet" and "beat" and "beast"
? one:"b?t" matches'bat" and"bet" and"bit"

[..] oneof:"a[cr]t" matches'act" and"art"

~ none of: "ab [ *bc] " matches'abd" but not"abb" nor"abc"

- range:" [0-2]14" matches'04" and"14" and"24"

The literal value of a wild-card character is specified by enclosing it in brackets,
e.g.[~]. Some examples:

files: ("a.c";"foo.h";"bc")
files sm "*.[ch]"
110
‘one two "three "four sm "two"
0100
(‘one;"one") sm (("on["a-z]"; "b); ,"one")
(0 0
+ 1)

Error Reports
Type Error if x or y is not as described.

Length error if the arguments are both lists but their counts (down to string-atomic-
ity) are different.



String Search
X SS Yy
Arguments and Result
The left argument is a character string or string list, and the right argument is a
string, symbol, or list of strings and/or symbols. The result is a list of nonnegative
integers.
Description
Find all occurrences of strings of y in strings of x.
Definition
Like String Match, String Search is a string-atomic function (see String-Atomic
Function). If x and y are character strings, then each item in the resulting integer
vector is the first index of a unique occurrence of the string y in the string x. That s,
if r: y ss x thenforeveryindexiofr:

y o~ x[1+!4#vy]

Matching substrings may not overlap. For example:

x:"Mississippi"
x ss "issi"

, 1

x ss "iss"
1 4

x[1+0 1 2 3]
"issi"

If y is not a substring of x, the result is the empty integer vecior

Wild-card characters defined for String Match are permissible in y, with the excep-
tion of *. When the right argument y is a symbol, it is treated as a word; that is, a
sequence of characters surrounded by non-alphanumerics. For example:

x:"Extract 15 words out of 1015."
x ss "15"
, 8

K Reference Manual 14: System Functions 223



Error Reports
Type Error if the argument types are not as described above.

Length Error if the arguments do not conform (see String-Atomic Function), or ify
(or an item of y) is the empty string'.

224



String Search and Replace
_ssr[x;y;z]
Arguments and Result
The first argument x is a character string, and the second argument y is a string,
symbol, or character. The third argument z may be an atom, string, or monad. The
result is a string.
Description
Find all occurrences of vy in string x, and replace with z.
Definition
Each occurrence of the substring y in the character string x is replaced with the
value of z. For example:

s:"Adam had a pear"
_ssrls;"a";"the"]

"Adthem hthed the pether" /[replace substrings
_ssr[s; a;"the"]

"Adam had the pear" / replace word

The result is identical to x if y is not a substring of x.

All wild-card characters permitted for String Search are also valid here.

Error Reports
Type Error if either argument is not a character string.

K Reference Manual 14: System Functions 225



Vector from Scalar
X Vs y
Arguments

The left argument x is either a positive integer atom or vector, while the right
argument y is an integer atom or list of integers. The result is a list of integers.

Description
Expand y in the radices x.

Definition

Vector from Scalar computes the base representation of y in radices x. For ex-
ample:

10 vs 1995
1 995

2 vs 9
1 001

24 60 60 wvs 3805
1 3 25

If the right argument is an integer vector then the result ofvs y is a matrix

with #x itemswhoseithcolumiix vs y) [;1] isidenticaltox vs y[i].

More generally, the right argument y can be any list of integers, and each item of
the result is identical to y in structure. For example:

a: 10 vs 1995 1996 1997

226



10 wvs (1995; 1996 1997)

6 7))

vs:{| (-1 1i)-c*1 i:y ( %)\ c:lx}

Error Reports
Domain Error if the left argument is integer but not positive.

Type Error if either argument is not integer.

K Reference Manual 14: System Functions 227



228



CHAPTER 15

DISPLAYS

Every global variable can be displayed on the screen simply by saying “show it”, as
in:

‘show $ "x

for the global variable x. A variable and its screen display are tightly coupled;
when the displayed value is edited the value of the variable changes automatically,
and when the variable is amended in the workspace the screen display changes
accordingly. Consequently, when the screen is edited, a global variable automati-
cally changes value, its trigger — if it has one — fires immediately, and any other
global variables dependent on it are marked invalid (and automatically re-evalu-
ated if displayed on the screen, thereby keeping the screen view consistent). In this
way the basic interactions with users are handled simply and automatically.

The display of a global variable is removed from the screen by saying “hide it”, as
in:

‘hide $ "x

Usually, both® shows$ and “hide$ are applied to handles, in which case their
result is nil. If either monad is applied to an expression, a variable is created for it
and its handle returned. These are namg@ “s1 “s2 ..., and should be consid-

ered reserved names since they are used in the given order regardless of any previ-
ous assigned value.

K Reference Manual 229



Data Presentation

Every atomic K data type has a default display. Examples are shown in the follow-
ing figure. They were created as follows:

\d .atoms

int: 1264

float: 1.2391

char: "Xyz"

symbol: "xyz

function: {x + vy}

“show$' “int float char symbol function  .atoms

x .atoms.int x .atoms.float Ed x .atoms._char ‘

int | 1264 float | 1.2391 char | zvz

x .atoms.symbol [E x .atoms |

symbol | xyz int 1264
float 1.2391
char XY Z

x .atoms function [EH symbol [ vz

function| {x + v}

function | {x + v}

Note that character strings are atomic for screen displays, rather than just character
atoms. There are also default displays for integer, floating-point and symbol vec-
tors, lists of character vectors and functions, and dictionaries whose entries have
these types of values. In all cases the displays are column-oriented, i.e. items dis-
play as columns. For example, for dictionaries:

\d .k.lists
1i: 10 23 45231 95
1f: 1.2 45.768 -12.34 0.123

230



lc:

("XYZ"; "ship"; "boat";
ls: "xyz "car truck “train
lu:s (+; {x + yv}; -7 {x - y})
\d
"show $ “lists

x .k lists: 4 ]|

It Ic

Is lu
10] 1.2l Z¥ =2 XY +
2345, ship | car fx + vl
=4 5-12 hoat | truck| -
950,11 canoe| train {x - v

The independent displays of the entries in this dictionary are also column-oriented
and look much like the above display, except that they have no column titles.

Finally, there are default displays for matrices of the basic types. Executing the

"canoe")

following results in the display shown below on the left:

intmat:
‘show $

o[ 5[ a] 1z 18] zo
1| gl o 13 19 z1
2| 71 12 2z

3 B1| 15

4 16

[ 17

K Reference Manual

05 8 12 18 20 23 1 23
“intmat

% _k.intmat: 7xb6 X |

x k.intmat: 7xb6 x| |

5| g 12| 18] 20
ﬂ gf 9 13[ 19 =21
zl 7] 10] 14 2z
3 11] 15
[ 4 [ 1a
17

15: Screen Displays 231




Note that the items of intmat are the columns of the display. The columns show the
application of a default formatting function, as can be seen from the third column

where the entries with more than one digit (10 and 11) are not shown. The default
formatting can be overridden by setting the Format attribute. For example, evaluat-
ing the following line will cause the display to change to the one shown above on

the right:

intmat..f: 2 $

Display Classes

232

The display class of a variable can be specified with the Class attribute. The default
display classisdata , and all the displays discussed in the previous section are of
that class. There are alsehart and plot , "check and radio, and
“button . Finally, the entries of dictionaries of classorm can be arranged in

a variety of ways on the screen. (See Arrangement in the chapter Attributes.)

Both the chart and plot classes are for graphs. A numeric vector y can be displayed
as a chart, and is plotted vertically against the horizontal coordin&tesA nu-

meric matrix can also be displayed as a chart, in which case each (vector) item
y[1] is plotted against#y[i] .

The plot class is like chart, except that coordinate pairs must be supplied. The
simplest case is a two-item numeric matkix whose items have the same count,

in which casexy [ 1] is plotted vertically against horizontaly [0] . A list of such
two-item lists will produce a set of independent traces on the same graph.

An integer atom whose value is 0 or 1 can be displayed as a check button, and a
dictionary whose entries are all atoms with values 0 or 1, and whose display classes
are all* check , will display a series of check buttons. For example:

chk:.+("a’b'c’d;0 1 1 0)
chk[.; c]: check
‘show $ “chk

Since the check buttons are held in a dictionary they can be arranged in many
different ways simply by setting the arrangement attribute on the dictionary. Note
that the class of the dictionary is automatically a form because the class of its
entries was explicitly set (tocheck).



| kehk F3 « krad K|

T a
x kb ™ Zero
T ohe
v b | b
X * Two
—] .
Foc ¥ three
7  four
'S
- d five

The radio class uses the option list attribute in its display. If a variable is of class
‘radio, thenits. o attribute must be a symbol vector, and its initial value must
be one of these symbols. For example, the following code results in the display
shown above on the right:

rad..o: ~zero one two three four five
rad: rad..o[2]
rad..c: "radio

"show $ “rad
See also Option List in the chapter Attributes for a description of the radio class.

Finally, any character vector can be displayed as a button. The contents of the
character vector must be a valid K expression or sequence of expressions, which
will be executed whenever the button is pressed.

A dictionary whose entries are valid buttons can be made into a pulldown menu.
For example, the following code will generate a pulldown menu with three items:

b.x: "24+43"
b.y: "5=-2"
b.z: "8*x!3"
b..c: “button
‘show $ b

K Reference Manual 15: Screen Displays 233



Now put the mouse cursor on the button b and press and hold the left mouse button.
A display of the buttons x, y and z will appear, as shown in the center of the above
figure. While still holding the left mouse button, move the mouse cursor to the
button x and release the button. The expressiea will be executed and 5 will
appear in your session log. Note that:t ton is the class of the dictionary, but

not necessarily the class of the entries.

234



Symbols

Idyad 110

I monad 37, 66
#dyad 114

# monad 61
$dyad 74, 76
$ monad 73
% dyad 62

% monad 108
& dyad 99

& monad 120
'. Seequote

() notation 20
*dyad 117

* monad 69

* wild-card 222
*| 69, 109

+ dyad 105

+ monad 70

, dyad 93

, monad 65

- dyad 100

- monad 103
-h option 196
-i option 195

. dyad 88

. monad 96, 118
. tetrad 51

. triad 50, 54

. 159

K Reference Manual

.a attribute 160
.bg attribute 161
.c attribute 162
.d attribute 162
.e attribute 163
fattribute 163
fg attribute 161
.g attribute 165
.h attribute 163
.k attribute 162
.k directory 40, 199
Kfile 181, 184
.k file 200, 202
Kk attribute 162
I attribute 164
.L file 181, 184
.m directory 195
.m.c 195

.m.g 191, 195
.m.h 196

.m.s 188, 195
.m.u 195

.0 attribute 164, 233
.t attribute 164
.tvariable 201
.U attribute 164
X attribute 166
.y attribute 166
/

Comment 172
Over Dyad 130

INDEX

Over Monad 135
Al 136
/. 128
/[] Over 133
127

Amend 142
Conditional 167
monadic case 122
Resume 172
Return 173
5142
< dyad 94
<monad 83
=dyad 67
=monad 84
>dyad 101
> monad 80
? dyad
Find 68
Inverse 78
? monad 84107
? triad 78
? wild-card 222
?/. 128
@ dyad
Apply 57
At 86
Execute 118
@ Error Trap 57
@ monad 60

235



@ tetrad 47
(]
Apply 146
Index 149
wild-card 222
[:
Amend 144
Item Amend 150

Abort 171
command 198, 200
Scan 138
Scan Dyad 137
Stop / Trace 175

\: 125

\\ 199

\_ 202

\b 175, 198

\c 198

\d 198

\e 199.See alse@rror flag

\i 200

\I 200

\p 200

\r 201

\s 202

\t 201, 202

\v 199

\w 202

AN dyad 106

Amonad 112

AC 200

_dyad 63

__monad 72

__notation 203, 207

_abs 217

_bin 207

_binl 207

_ci 213

_cos 217

_d 203

_di 209

_dj 214

_dot 218

_draw 211

236

_dv 210
_dvl 210
_exp 217

_f 205

_floor 217
_gtime 212
_h 204

_i 162,204
_ic 213

_in 125, 219
_in\: 125
_inv 218

_jd 214

_lin 219

_log 217
_Isq 215, 218
_ltime 212
_mul 218

_n 205. See alsmil
_p 204

_sin 217
_sm 222
_sqr 217
_sqrt 217
_Ss 223
_ssr 225
_sv 220

_t 204

_tan 217

_u 204

_v 162, 203
_vs 161, 226
_w 204
“hide 229
‘radio 233
“show 229

{} 155

| dyad 98

| monad 109
|/ 36

~ dyad 97
~monad 104
0: dyad 177,179
0: monad 177
0l 95, 102

0i 62

:dyad 181, 182
:monad 181
:dyad 185
:monad 184
:dyad 188
:monad 186, 187
:dyad 191
:monad 190
:dyad 194
:monad 193

> UURPRWWNNRPE

Abort 171
absolute name 23
absolute path 40
absolute reference 118, 157
Accumulate 56
Accumulate Item 50
active directory 41
adverb 18, 26, 121
adverb composition 24
Amend 39, 51, 142, 144
Amend Each 56
Amend Entire 56
Amend Item 47
And 99
application 200
application script 199
Apply 58, 146

error trap 59
Apply Monad 153
approximation 78
argument list 20, 155
argument notation 20
arrangement attribute 160
ASCII 17
Assign 142
assignment 22
asynchronous communication

188

At 86
Atom 30, 60
atom 29



atom function 29 colon 22 D

atomic 31 color 161
atomic function 29 column 230 data class 162, 232
attribute 15, 159 column title 231 data type

verb 104 command 27, 197 K 185
attribute dictionary 20, 23,96,  OS (operating system) 200 Date from Julian Day function

159 Commands command 198 214
Attributes command 197 comment 26, 27, 172 Deal 201
authorization vector 195 communication 177 Deal function 211
authorized user 196 Communication Handle 186  debug 27, 171, 199
communication handle 204  default

B communication partner 186 display 230

comparison tolerance 32, 33, default arguments 155

back-quote.See 67, 72, 94, 97, 101, 136, default directory 41

back-slash 19, 200

back-slash character 38 2.102 219 defautt display cIas; 162
: compilation 185 default error behavior 199
background attribute 161 : d ; ‘i
: compile 201 efault print precision 201
binary search 207 i default value 159
Binary Search function 207 compound expression 22 : ;
compound name 23 Delete Indices function 209
boolean 131, 199 conditional evaluation 21, 167 Delete Value function 210
bracket-semicolon notation 20, ' d dencies 12
21 41. 58. 141 conform 34 dependenCIeSSS 200
T PO ependenc ,
Break Flag command 198 conformable 31. P y <o
: conformable object 33 dependency attribute 162
broken connection 195 deoth 36
button 162 232 conformable vector 34 ep .
di 164’1 console 35 derived function 121
b radio 33 command 197 derived verb 18
bL:Jttttc?nnclass 162, 233 Console Flag 198 development cycle 11
! control statement 21 dictionary 37, 41, 91, 96
C control-C 200 attribute 159
controls 171 difference 100
C language 11, 182 coordinate 232 digit 200
character constant 32 Copy K Data 184 directory 91, 198
character dimensions 166 cosine function 217 attribute 104
Character from Integer function count 61 Directory command 198
213 cross-sectional index 89 Directory Entries command 199
character string 32 current directory 41, 199, 200 display 229
character vector 32 Current Directory variable 203 Divide 62
‘chart 232 Current Global Set variable 203D0 135
chart class 162, 232 Current Time variable 204 Do statement 168
‘check 232 cursor 162, 234 Do with trace 139
check class 162, 232 Cut 63 dot 23, 88, 96, 119
class attribute 162 cycle 162 dot product 218
click attribute 162 dot-dot 159
Close Handle 187 double click attribute 162
closed connection callback 195 double colon 158

K Reference Manual Index 237



double-quote character 38
Draw function 211

Drop 63

duplicate items 81

dyad 19, 30, 37

dyadic function. Sealyad
dynamic load 14

E

Each 33, 122

Each Left 125

Each Pair 127

Each Right 128, 156
editable attribute 163
empty character vector 37
empty expression 22
empty list 20, 37, 97
encode 201

Enlist 20, 65

entry 37

Enumerate 66
enumeration 37

Equal 67

Error Flag command 199
Error Trap 59

Error Trap (Monadic) 57
escape sequence 38
evaluation 24

event 162

Executable Form 193
Execute 118, 119, 148, 197
execution monitor 175
execution time 202

Exit command 199
exponential notation 18
exponentiation 106

F

factorial function 205
field 179, 182

fields 12

Find 68, 208

Find Each Right 128
First 69

238

First Reverse 69
First-Reverse 109
five-colon. Seeb:
fixed function argument 156
fixed left argument 24
Flip 70
floating-point
number 18
floating-point number 200
floating-point vector 38
Floor 72
font 166
foreground attribute 161
Form 76
form. See alsmotation
size 166
form class 162, 232
formal parameter 185
Format 73
Format (Dyadic) 74
Format attribute 232
format attribute 163
Fortran 14
four-colon. See4:
function 18, 21, 155
external 185
function atom 38
function composition 23
Function Inverse 78

G

get message 191
filter 195
global assignment 22
global dictionary 37
global variable 35, 40, 158,
200, 203
GMT Time function 212
Grade Down 80
Grade Up 83
graph 232
graphical user interface 12
Group 84

connection filter 196
handle 39, 92, 104, 158
communication 186, 187
Handle variable 204
height attribute 166
help attribute 163
hide 229
hierarchy 15
homogeneous list 12, 39
Horner's method 220
host 197
Host Process variable 204

/0 22

identical 97

identity function 63

If statement 169

immediate verb use 23

In Each Left 125

incomplete expression 25

Index 88, 149

index 20

Index All 92

Index Item 49, 86

infinity 18, 62, 95, 102, 106

infix notation 207

Integer from Character function
213

integer vector 39

interface 185

Internal Data Type 190

internet protocol 186

interprocess communication 14,
22,177,195

invalid name 200

Invalid Values command 200

inverse function 78

IP address 186

item 40

item-at-depth 40



Items Changed varaible 204 logical And 99 multiply 117

iteration 135, 139 logical negation 104
trace 138 logical Or 98 N
J M Negatg 29, 103
Negation
Join 93 Machine Name variable 204 logical 104
Julian Day from Date function magnitude function 217 new-line character 38
214 Make Dictionary 37, 96 nil 18, 41, 68
mapped file 184, 202 Nil variable 205
K Match 68, 97, 210 nilad 20, 42
K User Manual 15, 166, 185, math function 217 niladic function 58
186, 195, 196 mat.nx 215 Not 104
K-tree 15, 23, 40 dls.pllay 231 not—a_—number 18
matrix inverse 218 notation
L matrix multiply 218 bracket-semicolon 41, 58
matrix transpose 70 null 18
label attribute 164 Max 98 number 18
last 69, 109 Max-Over 36 numeric list 42
Least Squares function 215 Maximum 131
left mouse button 162, 234 general form 136 O
left to right evaluation 25 Membership function 219 object code 185
left-atomic function 41 memory mapp|ng 184 octal number 38
Ieft—to-rlght 168, 170 menu 233 Of 88
Less 94 message 195 one-colon. Seel.:
lexicographic order 94,101 message filter 188,191,195 27 0 50 6o
Link Object Code 185 Message Source variable 204 ~ . " T
st 41 Min 99 operand 121
argument 20 Minimum 131 -
indices 20 eneral form 136 operat!ng system 185, 200
; 9 operating system command 191
_one—|tem 18- ; minimum operator. Seeadverb
|TISt Membershlp function 219 width and height 166 Option L.ist attibute 233
list notation 20 Minus 100 option list attribute 164
listening port 196 minus 27 Opr 98
load Mod 110 der 20
step 202 modify 142 g;dz: of eZ/aIuation 24
Load Binary File 182 modify, verb 122 0S. Seepperating system
Load cgmmand 200 module 185 Ovér c5 133
Load File 177 monad 24, 41 Over Dyéd 130
Load K Data 181 monadic case 23,24,26,122 5 -\ e
Load Text File as Fields 179 monadic function 19
local function 158 monitor 195 P
Local Time function 212 More 101
localization 157 mouse 234 padding 180
logarithm function 217 mouse button 162 partition 63

K Reference Manual Index 239



partner

communication 186
permutation 80
‘plot 232
plot class 162, 232
Plus 31, 105
Plus-Over 121
polynomial evaluation 220
port 186, 195
Port variable 204
Power 106
precedence 24
prefix 19
primitive attribute 159
primitive function 42
print precision 32, 200
Print Precision command 200
process 15, 204
programming language 185
projection 146, 156
pulldown menu 233

Q
quote 19,122, 173

R

radio class 162, 164, 233

radix 220, 226

Random Integer 201

Random Probability 201

Random Probability function
211

random seed 201

Random Seed command 201

Random Selection function 211

Range 107

rank 42

Reciprocal 108

rectangular list 43

recursive function 205

referent 157

relational database 11

relational table 12

relative name 23

240

relative referent 157
remainder 110
Remote Get 191
Remote Set 188
replace 225
Reshape 114, 115
residue 161.See alsiMod
Resume 172
Return 173
Reverse 109

RGB 161

singular matrix 218
sort 14
sort order 207
space 26
used and allocated 202
spreadsheet 12
spreadsheets 11
square matrix 218
Step command 202
Stop 175, 198
String Match function 222

right-atomic function 31, 43, 86 String Search function 223

root directory 41
Rotate 110
runtime program 201

S

Save File 177
Save K Data 181, 184
Scalar from Vector function
220
scale 13
Scan 138
Scan Dyad 137
Scan Monad 139
screen display 229
script 43, 200, 201, 202
script file 193
scroll 14
search and replace 225
Secant 78
Self Referent variable 205
server 195
session log 201
set message 188
filter 195
Set Timer command 201
Shape 112
show 229
side effect 164
Signal 173
signal 199
simple verb 42
sine function 217

string-atomic 230

subdirectory 41

sum 121

sum-of-squares 215

Sun 14

suspended execution 59, 171,
199

symbol 44

symbolic indexing 91

Synchronized File Append 194

synchronous communication
191

synchronous connection filter
196

syntax 17

system function 207

system name 23

System Names command 202

system parameter 197

system variable 203

T

tab character 38
table

database 12
Take 114
tangent function 217
tetrad 156
three-colon.See3:
Time command 202
timer 201
Times 117, 118



tolerance 78.See als@om-
parison tolerance

tolerantly equal 33

top-level item 40

Trace 175, 198

transpose 70

trigger 45, 229

trigger attribute 164

two-colon. See2:

type 190

U

underscore 23, 203, 207

Unmake Dictionary 96

unspecified arguments 146

update 194

update attribute 164

User Manual.SeeK User
Manual

User variable 204

utility script 198, 200

Vv

valence 45, 122, 138, 146, 185

validation attribute 165
Value 118, 119
variable

global. Segylobal variable
vector 45

floating-point 38

integer 39
Vector from Scalar function

226

vector notation 22, 46
verb 207
verb modification. Seeadverb
view 229

W

Where 120
While 136

with trace 140
While statement 170

K Reference Manual

width attribute 166
wild-card 222
Workspace Size command 202

Index 241



242



	K REFERENCE MANUAL - title page   
	  Table of Contents   
	  1: INTRODUCTION   
	What is K?   
	Dependencies and Data Bases   
	The Language   
	Graphical User Interface   
	Connectivity   
	Component Management   
	About this manual   

	  2: SYNTAX   
	Nouns   
	Verbs   
	Adverbs   
	List Notation   
	Index and Argument Notation   
	Conditional Evaluation and Control Statements   
	Function Notation   
	Juxtaposition and Vector Notation   
	Compound Expressions   
	Empty Expressions   
	Colon   
	Names   
	Function Composition   
	Adverb Composition   
	Fixing the Left Argument of the Dyad of a Verb   
	Precedence and Order of Evaluation   
	Incomplete Expressions   
	Spaces   
	Special Constructs   

	  3: TERMINOLOGY   
	A-E   
	Atoms   
	Atom Functions    
	Character Constant   
	Character String   
	Character Vector   
	Comparison Tolerance    
	Conformable Data Objects    
	Console   
	Dependencies   
	Dependent Variables   
	Depth    
	Dictionary    
	Dyad   
	Empty List   
	Entry   
	Escape Sequence    

	F-N    
	Floating-Point Vector   
	Function Atom   
	Handle   
	Homogeneous List    
	Integer Vector   
	Item
	K-Tree   
	Left-Atomic Function    
	List    
	Matrix    
	Monad    
	Nil   
	Nilad    
	Numeric List    
	Numeric Vector    

	P-W    
	Primitive Function   
	Rank   
	Rectangular List   
	Right-Atomic Function    
	Script    
	Simple List   
	Simple Vector   
	String    
	String-Atomic Function   
	String Vector   
	Symbol   
	Symbol Vector   
	Trigger   
	Valence    
	Vector    
	Vector Notation   


	  4: VERBS    
	A-F    
	Amend Item
	Amend   
	Apply (Monadic)
	Apply   
	Atom   
	Count   
	Divide   
	Drop / Cut   
	Enlist   
	Enumerate   
	Equal
	Find   
	First
	Flip   
	Floor   
	Format
	Format (Dyadic)
	Form
	Function Inverse   

	G-N
	Grade Down
	Grade Up    
	Group
	Index Item, or At
	Index, or Of
	Join   
	Less   
	Make / Unmake Dictionary
	Match
	Max / Or   
	Min / And   
	Minus   
	More
	Negate   
	Not / Attribute   

	P-W   
	Plus   
	Power   
	Range
	Reciprocal   
	Reverse   
	Rotate / Mod   
	Shape   
	Take / Reshape    
	Times    
	Value / Execute    
	Where    


	  5: ADVERBS   
	Each   
	Each Left   
	Each Pair   
	Each Right   
	Over Dyad   
	Over   
	Over Monad   
	Scan Dyad   
	Scan   
	Scan Monad   

	  6: AMEND, INDEX, APPLY & ASSIGN   
	Amend   
	Amend
	Apply   
	Execute
	Index   
	Item Amend
	Item Index
	Apply Monad

	  7: FUNCTIONS   
	Projection; Fixing Function Arguments   
	Localization   
	Local Functions   

	  8: ATTRIBUTES   
	Arrangement
	Background Color / Foreground Color   
	Class   
	Click / Double Click   
	Dependency   
	Editable   
	Format
	Help   
	Label   
	Option List   
	Trigger   
	Update   
	Validation
	Width / Height   

	  9: CONDITIONALS   
	Conditional Evaluation   
	Do   
	If   
	While   

	  10: CONTROLS AND DEBUGGING   
	Abort
	Comment   
	Resume
	Return   
	Signal
	Stop / Trace

	  11: I/O AND COMMUNICATION   
	Load / Save Text File   
	Load Text File as Fields
	Load/Save K Data as K Files
	Load Binary File as Fields   
	Copy K Data from K File   
	Link Object Code   
	Communication Handle
	Close Handle   
	Remote Set
	Internal Data Type   
	Remote Get
	Executable Form   
	Synchronized File Append   
	Interprocess Communication

	  12: COMMANDS   
	A-I  
	Adverbs   
	Assignment, Functions, Control   
	Attributes   
	Break Flag    
	Commands   
	Console Flag   
	Data and I/O Verbs   
	Directory    
	Directory Entries   
	Error Flag
	Exit   
	Interrupt   
	Invalid Values   

	L-W   
	Load
	OS Command   
	Print Precision    
	Random Seed   
	Runtime Program   
	Set Timer   
	Step   
	System Names   
	Time    
	Verbs   
	Workspace Size    


	  13: SYSTEM VARIABLES   
	Current Directory   
	Current Global Set   
	Current Time   
	Host Process (Machine Name)   
	Host Process (Port)   
	Items Changed    
	Message Source (Handle)   
	Message Source (User)   
	Nil Value      
	Self Referent   

	  14: SYSTEM FUNCTIONS   
	Binary Search   
	Delete Indices   
	Delete Value / Delete Value List   
	Draw   
	GMT Time / Local Time   
	Integer from Character / Character from Integer   
	Julian Day from Date / Date from Julian Day   
	Least Squares   
	Math Functions   
	Matrix Functions   
	Membership / List Membership   
	Scalar from Vector   
	String Match   
	String Search   
	String Search and Replace   
	Vector from Scalar   

	  15: SCREEN DISPLAYS   
	Data Presentation   
	Display Classes   

	  INDEX   
	Symbols
	! dyad  
	! monad  
	# dyad  
	# monad  
	$ dyad  
	$ monad  
	% dyad  
	% monad  
	& dyad  
	& monad  
	'. See quote
	( ) notation  
	* dyad  
	* monad  
	* wild-card  
	*|  
	+ dyad  
	+ monad  
	, dyad  
	, monad  
	- dyad  
	- monad  
	-h option  
	-i option  
	. dyad  
	. monad  
	. tetrad  
	. triad  
	..  
	.a attribute  
	.bg attribute  
	.c attribute  
	.d attribute  
	.e attribute  
	.f attribute  
	.fg attribute  
	.g attribute  
	.h attribute  
	.k attribute  
	.k directory  
	.K file  
	.k file  
	.kk attribute  
	.l attribute  
	.L file  
	.m directory  
	.m.c  
	.m.g  
	.m.h  
	.m.s  
	.m.u  
	.o attribute  
	.t attribute  
	.t variable  
	.u attribute  
	.x attribute  
	.y attribute  
	/
	Comment  
	Over Dyad  
	Over Monad  

	,//  
	/:  
	/[] Over  
	':  
	:
	Amend  
	Conditional  
	monadic case  
	Resume  
	Return  

	::  
	< dyad  
	< monad  
	= dyad  
	= monad  
	> dyad  
	> monad  
	? dyad
	Find  
	Inverse  

	? monad  
	? triad  
	? wild-card  
	?/:  
	@ dyad
	Apply  
	At  
	Execute  

	@ Error Trap  
	@ monad  
	@ tetrad  
	[]
	Apply  
	Index  
	wild-card  

	[]:
	Amend  
	Item Amend  

	\
	Abort  
	command  
	Scan  
	Scan Dyad  
	Stop / Trace  

	\:  
	\\  
	\_  
	\b  
	\c  
	\d  
	\e  
	\i  
	\l  
	\p  
	\r  
	\s  
	\t  
	\v  
	\w  
	^ dyad  
	^ monad  
	^C  
	_ dyad  
	_ monad  
	_ notation  
	_abs  
	_bin  
	_binl  
	_ci  
	_cos  
	_d  
	_di  
	_dj  
	_dot  
	_draw  
	_dv  
	_dvl  
	_exp  
	_f  
	_floor  
	_gtime  
	_h  
	_i  
	_ic  
	_in  
	_in\:  
	_inv  
	_jd  
	_lin  
	_log  
	_lsq  
	_ltime  
	_mul  
	_n  
	_p  
	_sin  
	_sm  
	_sqr  
	_sqrt  
	_ss  
	_ssr  
	_sv  
	_t  
	_tan  
	_u  
	_v  
	_vs  
	_w  
	`hide  
	`radio  
	`show  
	{}  
	| dyad  
	| monad  
	|/  
	~ dyad  
	~ monad  
	0: dyad  
	0: monad  
	0I  
	0i  
	1: dyad  
	1: monad  
	2: dyad  
	2: monad  
	3: dyad  
	3: monad  
	4: dyad  
	4: monad  
	5: dyad  
	5: monad  

	A
	Abort  
	absolute name  
	absolute path  
	absolute reference  
	Accumulate  
	Accumulate Item  
	active directory  
	adverb  
	adverb composition  
	Amend  
	Amend Each  
	Amend Entire  
	Amend Item  
	And  
	application  
	application script  
	Apply  
	error trap  

	Apply Monad  
	approximation  
	argument list  
	argument notation  
	arrangement attribute  
	ASCII  
	Assign  
	assignment  
	asynchronous communication  
	At  
	Atom  
	atom  
	atom function  
	atomic  
	atomic function  
	attribute  
	verb  

	attribute dictionary  
	Attributes command  
	authorization vector  
	authorized user  

	B
	back-quote. See `
	back-slash  
	back-slash character  
	background attribute  
	binary search  
	Binary Search function  
	boolean  
	bracket-semicolon notation  
	Break Flag command  
	broken connection  
	button  
	radio  

	'button  
	button class  

	C
	C language  
	character constant  
	character dimensions  
	Character from Integer function  
	character string  
	character vector  
	'chart  
	chart class  
	'check  
	check class  
	class attribute  
	click attribute  
	Close Handle  
	closed connection callback  
	colon  
	color  
	column  
	column title  
	command  
	OS (operating system)  

	Commands command  
	comment  
	communication  
	Communication Handle  
	communication handle  
	communication partner  
	comparison tolerance  
	compilation  
	compile  
	compound expression  
	compound name  
	conditional evaluation  
	conform  
	conformable  
	conformable object  
	conformable vector  
	console  
	command  

	Console Flag  
	control statement  
	control-C  
	controls  
	coordinate  
	Copy K Data  
	cosine function  
	Count  
	cross-sectional index  
	current directory  
	Current Directory variable  
	Current Global Set variable  
	Current Time variable  
	cursor  
	Cut  
	cycle  

	D
	data class  
	data type
	K  

	Date from Julian Day function  
	Deal  
	Deal function  
	debug  
	default
	display  

	default arguments  
	default directory  
	default display class  
	default error behavior  
	default print precision  
	default value  
	Delete Indices function  
	Delete Value function  
	dependencies  
	dependency  
	dependency attribute  
	depth  
	derived function  
	derived verb  
	development cycle  
	dictionary  
	attribute  

	difference  
	digit  
	directory  
	attribute  

	Directory command  
	Directory Entries command  
	display  
	Divide  
	Do  
	Do statement  
	Do with trace  
	dot  
	dot product  
	dot-dot  
	double click attribute  
	double colon  
	double-quote character  
	Draw function  
	Drop  
	duplicate items  
	dyad  
	dyadic function. See dyad
	dynamic load  

	E
	Each  
	Each Left  
	Each Pair  
	Each Right  
	editable attribute  
	empty character vector  
	empty expression  
	empty list  
	encode  
	Enlist  
	entry  
	Enumerate  
	enumeration  
	Equal  
	Error Flag command  
	Error Trap  
	Error Trap (Monadic)  
	escape sequence  
	evaluation  
	event  
	Executable Form  
	Execute  
	execution monitor  
	execution time  
	Exit command  
	exponential notation  
	exponentiation  

	F
	factorial function  
	field  
	fields  
	Find  
	Find Each Right  
	First  
	First Reverse  
	First-Reverse  
	five-colon. See 5:
	fixed function argument  
	fixed left argument  
	Flip  
	floating-point
	number  

	floating-point number  
	floating-point vector  
	Floor  
	font  
	foreground attribute  
	Form  
	form. See also notation
	size  

	form class  
	formal parameter  
	Format  
	Format (Dyadic)  
	Format attribute  
	format attribute  
	Fortran  
	four-colon. See 4:
	function  
	external  

	function atom  
	function composition  
	Function Inverse  

	G
	get message  
	filter  

	global assignment  
	global dictionary  
	global variable  
	GMT Time function  
	Grade Down  
	Grade Up  
	graph  
	graphical user interface  
	Group  

	H
	h
	connection filter  

	handle  
	communication  

	Handle variable  
	height attribute  
	help attribute  
	hide  
	hierarchy  
	homogeneous list  
	Horner's method  
	host  
	Host Process variable  

	I
	I/O  
	identical  
	identity function  
	If statement  
	immediate verb use  
	In Each Left  
	incomplete expression  
	Index  
	index  
	Index All  
	Index Item  
	infinity  
	infix notation  
	Integer from Character function  
	integer vector  
	interface  
	Internal Data Type  
	internet protocol  
	interprocess communication  
	invalid name  
	Invalid Values command  
	inverse function  
	IP address  
	item  
	item-at-depth  
	Items Changed varaible  
	iteration  
	trace  


	J
	Join  
	Julian Day from Date function  

	K
	K User Manual  
	K-tree  

	L
	label attribute  
	last  
	Least Squares function  
	left mouse button  
	left to right evaluation  
	left-atomic function  
	left-to-right  
	Less  
	lexicographic order  
	Link Object Code  
	list  
	argument  
	indices  
	one-item  

	List Membership function  
	list notation  
	listening port  
	load
	step  

	Load Binary File  
	Load command  
	Load File  
	Load K Data  
	Load Text File as Fields  
	local function  
	Local Time function  
	localization  
	logarithm function  
	logical And  
	logical negation  
	logical Or  

	M
	Machine Name variable  
	magnitude function  
	Make Dictionary  
	mapped file  
	Match  
	math function  
	matrix  
	display  

	matrix inverse  
	matrix multiply  
	matrix transpose  
	Max  
	Max-Over  
	Maximum  
	general form  

	Membership function  
	memory mapping  
	menu  
	message  
	message filter  
	Message Source variable  
	Min  
	Minimum  
	general form  

	minimum
	width and height  

	Minus  
	minus  
	Mod  
	modify  
	modify, verb  
	module  
	monad  
	monadic case  
	monadic function  
	monitor  
	More  
	mouse  
	mouse button  
	multiply  

	N
	Negate  
	Negation
	logical  

	new-line character  
	nil  
	Nil variable  
	nilad  
	niladic function  
	Not  
	not-a-number  
	notation
	bracket-semicolon  

	null  
	number  
	numeric list  

	O
	object code  
	octal number  
	Of  
	one-colon. See 1:
	one-item list  
	Onto  
	operand  
	operating system  
	operating system command  
	operator. See adverb
	Option List attibute  
	option list attribute  
	Or  
	order  
	order of evaluation  
	OS. See operating system
	Over  
	Over Dyad  
	Over Monad  

	P
	padding  
	partition  
	partner
	communication  

	permutation  
	'plot  
	plot class  
	Plus  
	Plus-Over  
	polynomial evaluation  
	port  
	Port variable  
	Power  
	precedence  
	prefix  
	primitive attribute  
	primitive function  
	print precision  
	Print Precision command  
	process  
	programming language  
	projection  
	pulldown menu  

	Q
	quote  

	R
	radio class  
	radix  
	Random Integer  
	Random Probability  
	Random Probability function  
	random seed  
	Random Seed command  
	Random Selection function  
	Range  
	rank  
	Reciprocal  
	rectangular list  
	recursive function  
	referent  
	relational database  
	relational table  
	relative name  
	relative referent  
	remainder  
	Remote Get  
	Remote Set  
	replace  
	Reshape  
	residue  
	Resume  
	Return  
	Reverse  
	RGB  
	right-atomic function  
	root directory  
	Rotate  
	runtime program  

	S
	Save File  
	Save K Data  
	Scalar from Vector function  
	scale  
	Scan  
	Scan Dyad  
	Scan Monad  
	screen display  
	script  
	script file  
	scroll  
	search and replace  
	Secant  
	Self Referent variable  
	server  
	session log  
	set message  
	filter  

	Set Timer command  
	Shape  
	show  
	side effect  
	Signal  
	signal  
	simple verb  
	sine function  
	singular matrix  
	sort  
	sort order  
	space  
	used and allocated  

	spreadsheet  
	spreadsheets  
	square matrix  
	Step command  
	Stop  
	String Match function  
	String Search function  
	string-atomic  
	subdirectory  
	sum  
	sum-of-squares  
	Sun  
	suspended execution  
	symbol  
	symbolic indexing  
	Synchronized File Append  
	synchronous communication  
	synchronous connection filter  
	syntax  
	system function  
	system name  
	System Names command  
	system parameter  
	system variable  

	T
	tab character  
	table
	database  

	Take  
	tangent function  
	tetrad  
	three-colon. See 3:
	Time command  
	timer  
	Times  
	tolerance  
	tolerantly equal  
	top-level item  
	Trace  
	transpose  
	trigger  
	trigger attribute  
	two-colon. See 2:
	type  

	U
	underscore  
	Unmake Dictionary  
	unspecified arguments  
	update  
	update attribute  
	User Manual. See K User Manual
	User variable  
	utility script  

	V
	valence  
	validation attribute  
	Value  
	variable
	global. See global variable

	vector  
	floating-point  
	integer  

	Vector from Scalar function  
	vector notation  
	verb  
	verb modification. See adverb
	view  

	W
	Where  
	While  
	with trace  

	While statement  
	width attribute  
	wild-card  
	Workspace Size command  



