1. The Unsolwvability of the Halting Problem (Turing, 1936)
We define two pieces of notation:

(1) Ip{ﬂjj___rﬁnjl for 'procedure P applied to input ﬁ1,....ﬁn'

(2) '#P' for 'description of (procedure) P!

Claim: There is no procedure P such that, for any procedure 0, and A
any input to (I, P determines whether Q(A) halts or loops forever.

Proof: Suppose there were such a procedure. Call it 'HALT'. Let it
have the following description (#HALT):

(3) HALT(#Q,A) = Output 'H' if Q(A) halts; then halt.
Output 'L'" if Q(A) loops; then halt.

| ¥ HALT is a possible procedure, then so is HALT*:

(5) HALT#{#Q) = Qutput 'H' if HALT(#Q,#Q) outputs 'H': then halt.
Qutput 'L' if HALT{#J,#Q) outputs 'L'; then halt.

| f HALT# is a possible procedure, then so is HALT®%:

(6) HALT=*(#Q) = Loop if HALT#(#Q) outputs 'H'.
Halt if HALT#{#Q) outputs 'L'.

But HALT#** is not a possible procedure, for consider:

{7)  HALT#&({ FHALT*#) = Loop if HALT#({#HALT#*) outputs 'H' and halts;
if HALT {#HALT#, #HALT*%) outputs 'H' and halts:
if HﬂLT**{ﬁHﬂLTﬁ*j halts.
X CONTRADICTION
Halt if HALT#(#HALT*+*) outputs 'L' and halts:
if HALT (#HALT#*%, #HALT**) outputs 'L' and halts;
1F HALT =% {#HALT#*) loops,
% CONTRADICTION

More compactly:

(8) HALT##(#HALT*=) loops if, and only if, HALT**{#HALT*%*) halts.

This is a contradiction. Hence, there is no procedure HALT. 0Q.E.D.
2. 50 What?

Turing's theorem is noteworthy for at least three reasons. (1) It is a
beautiful argument. Although it establishes a profound result concerning all
mechanical procedures, it relies on little more than the "ordinary' notion of
a mechanical procedure, Naturally, a rigorous demonstration of the theorem,
of the sort a mathematician demands, involves somewhat more technical machinery;
but not that much more, (2) It is a useful result. It shows us that the class
of formulable problems not solvable by purely mechanical means is not empty.

It stimulates us to wonder what other problems, equally trivial in appearance,
are unsclvable, (3) It is philosophically significant. In establishing a

limit to mechanical procedures, it invites us to reeconsider traditional philo-
sophical puzzles about freedom and determinism, thought and mechanism,




3.

The Halting Problem and Programming.

The proof that the Halting Problem is unsolvable can be expressed directly
as a demonstration that a certain BASIC program cannot be devised.

HALT utilizes
HALT

We suppose that a program ("HALT') can be written in BASIC,
two input variables QS and AS, and produces a single output variable HS,
is defined:

(1) HALT(QS,A%) produces HS, HS = 'H' if the (BASIC) program whose text
is in Q%5 halts when applied to A$; else H5 = 'L',

The actual program can be supposed to have the following structure:

100
110
120
Loo
k1o
420
500

N

Lines 500-N cantain the hypothetical HALT program.
Lines 100-120 econtain the analogus of HALT®:,

the analogue of HALT=,

GOSUB 4oo

IF HS = 'H' THEN GOTO 110
END

LET A5 = Q5

GOSUB 500

RETURN

RETURN

Lines 400-420 contain

The '"paradoxical' nature of the program emerges when we consider its
behavior under the following circumstances:

OK
OK

LET Q5 = '100 GOSUB L4OO;110 IF HS = ''H''! THEN ...'
RUN

When started on Q5 = the text of itself, the program will halt enly if it

determines that it won't halt; it will loop only if it determines that it won't
loop. Trouble. But not with lines 100-420. So, with lines 500-N, our hypo-
thetical solution to the Halting Problem. But no more about that solution was

50 no such solution can be given in BASIC.

said than that It was a solution.




