
K Slices, K Dices

John Earnest

August 15, 2017

K offers several ways to access an element from a list or vector by index:

t: 11 22 33 44 55 66

t[4] / subscripting

55

t 4 / juxtaposition

55

t@4 / the 'at' verb

55

t . 4 / the 'dot' verb

55

At first glance, these all seem equivalent. How are they different? Indexing in K generalizes
to vectors:

t[1 2 3 2 1]

22 33 44 33 22

t 1 2 3 2 1

22 33 44 33 22

t@1 2 3 2 1

22 33 44 33 22

This is important for the common idiom for sorting:

u: 33 27 19 14 99 50

<u

3 2 1 0 5 4

u[<u]

14 19 27 33 50 99

1

However, dot doesn’t seem to work like the other approaches when indexing by a vector. Let’s
focus on bracket-indexing, for the sake of consistency, and come back to the alternatives later:

t . 1 2 3 2 1

rank error

t . 1 2 3 2 1

^

Consider indexing into a matrix. Remember: K matrices are a list of lists, so the “outer”
dimension is the row and the “inner” dimension is the column:

m: ("ABCD"

"EFGH"

"IJKL"

"MNOP")

m[1] / row

"EFGH"

m[1;3] / row; column

"H"

m[1 2] / rows

("EFGH"

"IJKL")

m[1 2;0 2] / rows; columns

("EG"

"IK")

m[0 2 0 2;1 3 1 3]

("BDBD"

"JLJL"

"BDBD"

"JLJL")

When indexing with brackets, an empty dimension is a “wildcard”:

m[;1 2] / all rows, columns 1 and 2

("BC"

"FG"

"JK"

"NO")

m[1 2;] / equivalent to m[1 2]

("EFGH"

"IJKL")

2

Side note: if you really want to access data by column rather than by row, consider taking
the transpose of it:

q: ("ABCD";9 8 7 4;`beef`pork`chicken`tofu)

q[;1]

("B";8;`pork)

+q

(("A";9;`beef)

("B";8;`pork)

("C";7;`chicken)

("D";4;`tofu))

(+q)1

("B";8;`pork)

In general, juxtaposition of a value and an index is equivalent to the verb at (apply), and
square brackets are equivalent to the verb dot (apply-at-depth). at is equivalent to dot if we
enclose its argument, restricting it to operate on the outermost depth:

m 1 2

("EFGH"

"IJKL")

m@1 2

("EFGH"

"IJKL")

m . ,1 2

("EFGH"

"IJKL")

m[1 2;1 3]

("FH"

"JL")

m . (1 2;1 3)

("FH"

"JL")

3

Indexing dictionaries works the same as with lists or vectors:

d: .((`foo;.((`quux;42);(`plam;99)))

(`baz;.((`plam;98);(`bar;102)))

(`bar;1 2 3))

d @ `foo`baz

(.((`quux;42;)

(`plam;99;))

.((`plam;98;)

(`bar;102;)))

d[`foo;`quux]

42

d[`foo`baz;`plam]

99 98

Dictionaries can additionally be indexed via dot-notation:

d.foo

.((`quux;42;)

(`plam;99;))

d.foo.quux

42

(`d.foo)`quux / symbol juxtaposition

42

`d.foo@ `quux / symbol application

42

4

You may have noticed that brackets are also used for calling functions. What gives?

f: {x+100*y}

f[4;9]

904

In K, indexing and calling functions (application) are identical ideas, so they have identical
syntax:

{2+x}[4] / subscripting

6

{2+x} 4 / juxtaposition

6

{2+x}@4 / the 'at' verb

6

{2+x} . 4 / the 'dot' verb

6

What happens if we use a “wildcard” index on a function or don’t specify every argument?

f[4]

{x+100*y}[4]

f[;9]

{x+100*y}[;9]

We get back a “projected” function which remembers the arguments that have been supplied
already but still needs values for any empty slots. In functional languages the process of produc-
ing new function from an existing one by supplying a fixed value for some arguments is called
“currying”:

(f[4])[9]

904

(f[;4])[9]

409

Note that this works on built-in verbs, too:

,[;"foo"]

,[;"foo"]

,[;"foo"]"bar"

"barfoo"

5

Consider the parallel between a partially applied function and a “partially sliced” matrix or
higher-dimensional structure:

b: {x{x+2*y}/:\:x}[!4]

b

(0 2 4 6

1 3 5 7

2 4 6 8

3 5 7 9)

b[1]

1 3 5 7

b[;2]

4 5 6 7

b[1;2]

5

{x+2*y}[1]'!4

1 3 5 7

{x+2*y}[;2]'!4

4 5 6 7

{x+2*y}[1;2]

5

In real-world code you might find many of these ideas combined in a single statement:

md: {.((`name;`$x);(`label;$x);(`type;y);(`table;`$z))}

md[;2;".pub.demo.retail"]'names@idx

(.((`name;`"Slab Fistmeat";)

(`label;"Slab Fistmeat";)

(`type;2;)

(`table;`.pub.demo.retail;))

.((`name;`"Brick Hardcheese";)

(`label;"Brick Hardcheese";)

(`type;2;)

(`table;`.pub.demo.retail;)))

(md[;2;".pub.demo.retail"]'names@idx)[;`name`type]

((`"Slab Fistmeat";2)

(`"Brick Hardcheese";2))

6

Important caveat! In K3, function projection is syntactic and requires square brackets:

{x+100*y} . 1 2 / works: all arguments provided

201

{x+100*y} . (;2) / doesn't work: dot-apply with wildcard

type error

{x+100*y}

^

> \

{x+100*y}[;2] / works: same as above but with brackets

{x+100*y}[;2]

{x+100*y} 2 / doesn't work: not enough arguments

valence error

{x+100*y} 2

^

> \

{x+100*y}[2] / works: same as above but with brackets

{x+100*y}[2]

7

