Numbers

1. Write a function which accepts two numbers and returns the sum.

Ex: f[2;3] returns 5
2. Write a function which accepts two numbers and prints out the result as "[num1] + [num2] = [result]" on its own line.
Ex: $f[2 ; 3]$ prints $2+3=5$ and the cursor ends up on the next line
3. Write a function that sorts an input integer list in descending order and returns the sorted list. Ex: f[32415] returns 54321
4. Write a function that returns all non-negative integers smaller than an input integer. Ex: f[5] returns 01234
5. Write a function that finds the ceiling of a float input. Ex: f[3.1] returns 4, f[-3.1] returns -3
6. Write a function that, given a list of lists of numbers, returns the first number of each list. Ex: f[(123;45; 6789$)]$ returns 146
7. Write a function that, given a list of lists of numbers, returns the size of each list. Ex: f[(123;45; 6789$)]$ returns 324
8. Write a function that multiplies the corresponding elements of two input integer vectors of the same size.
Ex: f[1 2 3; 4 5 6] returns 41018
9. Write a function that accepts two integer vectors and adds the entire second vector to each element of the first vector, returning the result. Ex: f[1 2 3; 45] returns (5 6; 67 7; 8)
10. Write a function that accepts two integer vectors and adds the entire first vector to each element of the second vector, returning the result. Ex: f[1 2 3; 4 5] returns (5 $67 ; 678$)
11. Write out what $123+/: \backslash: 45$ and $123+\backslash: /: 45$ are doing, step by step.
12. Write a function that sums up the elements of an input integer vector and returns the result. Ex: f[12 234 4] returns 10
13. Write a function that returns the sum of the first n numbers where n is the only parameter to the function. First try it using a loop. Then try it without loops.
Ex: f[5] returns 15
14. Write a function that returns the sum of all the even numbers up until n, where n is the only parameter to the function.
Ex: f[5] returns 6

Strings

1. Write a function which accepts a string str and a non-negative integer n and returns the first n characters of str.
Ex: f["abcde"; 3] returns "abc"
2. Write a function which accepts a string str and a non-negative integer n and returns the last n characters of str.
Ex: f["abcde"; 3] returns "cde"
3. Write a function which accepts a string str, a non-negative integer beg, and a non-negative integer end and returns the substring starting at index beg and ending at index end.
Ex: f["abcde"; 1; 3] returns "bcd"
4. Write a function which accepts a string str and returns that string with its letters sorted in ascending order.
Ex: f["adceb"] returns "abcde"
5. Write a function which accepts a string str and returns the unique characters in that string. Ex: f["aecabcab "] returns "aecb"
6. Write a function which accepts a string str and returns a 2-element list where the first element is the list of the unique characters in that string and the second element is a list containing the count of each unique element in the string.
Ex: f["aecabcab"] would return ("aecb"; 312 2)
7. Write the same function as above but with the return type being a dictionary where the keys are the unique characters of the string and the values are the counts. Hint - try it by modifying your previous answer with a few characters.
Ex: f["aecabcab"] would return .(`a;3); (`e;1); (`c;2); ('b;2))
8. Write a function which accepts a list of strings and appends ".txt" to the end of each of them, returning the modified list.
Ex: f[("file1";"file2";"file3")] returns ("file1.txt";"file2.txt";"file3.txt")
9. Write a function that accepts a symbol sym and a string str which concatenates the symbol, a dot, the string, and returns the result as a symbol Ex: f[`abc;"def"] returns `abc.def
10. What are the dangers of the function \{[paths] `4: "rmdir /s/q " ,/: paths\}? Note: Use `o: to play around with inputs instead of `4: so you can see what would have been passed to ` 4 : without
actually executing it.
11. Write a function that accepts a list of integers/floats/symbols/characters or strings and a delimiter character (i.e. ",") and creates a single delimited string out of the elements in that list. Ex: f[1 23 4;"|"] returns "1|2|3|4"
12. Write a function that accepts a list of symbols and a string which appends the string to the symbol list (i.e. the symbol list grows by one element where that element is the string). Ex: f[’abc `def; "ghi"] returns (`abc;`def; "ghi")
13. Write a function that trims leading and trailing spaces in the input string, returning the resulting string.
Ex:f[" ab cd e "] returns "ab cd e"
14. Write a function that consolidates all consecutive spaces of an input string into one and returns the modified string.
Ex: f[" abcd e "] returns " ab cd e"
15. Write a function which accepts a string and a delimiter and breaks that string up into tokens using the given delimiter. Advanced: Make it ignore delimiters that appear within quotes.
Ex: f["abc,def,ghi"; ","] returns ("abc"; "def"; "ghi")
f["abc,\"def,ghi\""; ","] returns ("abc";"\"def,ghi\"")
16. Write a function that returns the current local time as a string in "YYYY/MM/DD HH:MM:SS" format
17. Write a function that returns a list of all the absolute paths of files within a given directory on the file system, including files within subdirectories. If the input is a file path, returns a list containing only that file path.
