
Journal of Automated Reasoning 2 (1986) 191-216.
0 1986 by D. Reidel Publishing Company.

191

Problem Corner:

Seventy-Five Problems for Testing
Automatic Theorem Provers

FRANCIS JEFFRY PELLETIER
Department of Philosophy. University of Alberta, Edmonton, Alberta, Canada T6G 2E5.

(Received: 30 August 1985)

The purpose of this note is to provide a graduated selection of problems for use in
testing an automatic theorem proving (ATP) system. Included in these problems were
the ones I have used in testing my own ATP system (Pelletier 1982, and more recent
updates to the system). Some of the problems, especially some of the more difficult
ones described at the end of this note, are due to discussions with Len Schubert
(Computing, Univ. Alberta), Alasdair Urquhart (Philosophy, Univ. Toronto), and
Charles Morgan (Philosophy, Univ. Victoria).

People who have tried to compile lists of problems for ATPs in the past (for
example, the Association for Automated Reasoning) have discovered that the pro-
duction of such a list is difficult because (a) what is ‘easy’ for one system might not
be for another, (b) researchers are understandably shy about saying what problems
their ATP might have, unless they know that it is so difficult that any ATP will have
trouble with it, (c) especially with problems at the ‘easy end’ of the scale, researchers
are prone to think that any ATP system can prove it and so there is no call to write
them up, (d) the goals of ‘natural’ system ATPs and resolution-based ATPs are
different: the former tries to produce a ‘natural’ proof usually without prior conver-
sion to clause form. This means that some problems, especially at the ‘easy end’ of the
scale, will be trivial for resolution systems but difficult for ‘natural’ systems. On the
other hand, proponents of ‘natural’ systems think that at the ‘difficult end’ of the
scale, there will be problems within the grasp of the ‘natural’ systems which are
beyond the reach of resolution systems. It is therefore difficult to even give a
graduated scale of problems. All this has led to publication of dificuft problems, but
not to publication of lists of problems suitable for developing an ATP. The locus
clussicus of problems is McCharen et al. (1976) which contains a wide range of
problems all in clause form. More recently, the Journal of Automated Reasoning has
instituted its ‘Problem Corner’. A notable item herein is Lusk and Overbeek (1985).
All of us involved in ATP wish to encourage others - graduate students, for example
- to look into the field. But where is such a person to start? It is with such neophyte

192 FRANCIS JEFFRY PELLETIER

ATPers in mind that the following list is offered. None of these problems will be the
sort whose solution is, of itself, of any mathematical or logical interest. Such ‘open
problems’ are regularly published in the Newsletter of the Association for Automated
Reasoning. Most (but not all) of my problems can be found in elementary logic
textbooks - but they have been chosen either because logic students find them
difficult, or because previous ATP systems have reported difficulties in establishing
them, or because they have some interesting connection with other areas of math-
ematics (such as set theory). The judgements of difficulty are my own, and are based
primarily on my years of teaching elementary logic (so the judgements reflect how
difficult beginning students find the problems). The scales are from 1 (easiest) to 10,
and are relativized to the kind of problem involved. Thus; a ‘9’ in the propositional
logic section might in fact be easier than a ‘4’ in the monadic logic section. I give
problems in both ‘natural’ and clause form. The negated-conclusion clause form has
eliminated tautologous clauses (but see the remark below in the ‘Acknowledgement’
section). As mentioned, many of the ‘easier’ problems - especially in propositional
calculus - are trivial in resolution systems. Still, ‘natural’ systems might find them
diverting. In either case, however, I would think that any ATP ought to produce an
explicit proof, detailing what preceding formulas/clauses were invoked and (in the
case of ‘natural’ systems) what rules of inference were used. When comparing two
ATPs for efficiency (say by measuring CPU time on identical machines) it is of course
mandatory that the systems should include the cost of conversion to clause form
since it is only very rarely that problems ‘in the real world’ are presented in clause
form.

A Word on Notation

+: if-then
7: not
+: or
&: and
cr: if and only if
A: for all
E: there exists

p, 4, r, s . . . (perhaps with subscripts): propositional (sentence) letters; that is,
O-place predicate letters.

F, 9, . . . P, Q, , . . (perhaps with subscripts): predicate letters; context is used to
determine the adicity.

x, y, z, w, (perhaps with subscripts): (individual) variables.
a, b, c, (perhaps with subscripts): individual constants; that is, O-place function

symbols.
f,g,h.. . (perhaps with subscripts): function symbols; context is used to determine

the adicity.

SEVENTY-FIVE PROBLEMS FOR TESTING ATP

Precedence

1, A, E highest
&, + medium
-+, - lowest

193

Associativity

& and + are allowed to take arbitrarily many conjuncts/disjuncts. For the most part,
the notation is in common use and should provide no difficulties.

Propositional Logic

What follows here are some propositional logic theorems and arguments. They are
given both in ‘natural’ form and in negated-conclusion clause form. Some are of
historical interest (mostly having to do with the logical theorist), while others illus-
trate various ‘tricks’.

‘Naturaf’ form Negated-conclusion clause form

1. (2pts) A biconditional version of the ‘most difficult’ theorem proved by the
original Logic Theorist (Newell et al. 1957)

tP-+d-t14+lP) 1P + 4
-Jq+p
14
P

2. .(2pts) A biconditional version of the ‘most difficult’ theorem proved by the new
logic theorist (Newell and Simon 1972)

llP*P P
1P

3. (lpt) The ‘hardest’ theorem proved by a breadth-first logic theorist (Siklossy
et al. 1973)

l(P -+ 4) + (4 -+ PI P
14
4
1P

4. (2pts) Judged by Siklossy et al. (1973) to be ‘hardest’ of first 52 theorems of
Whitehead and Russell (19 10)

(1P + 9) 4-i (14 -+ P> P+4
14 + TP
19
1P

194 FRANCIS JEFFRY PELLETIER

5. (4pts) Judged by Siklossy et al. to be ‘hardest’ of first 67 theorems of Whitehead
and Russell (1910)

((P + 4) + (P + 4) -+
(P + (4 - r))

lq+p+r

1P
9
7r

6. (2pts) The Law of Excluded Middle: can be quite difficult for ‘natural’ systems

(P + 1P) 1P
P

7. (3pts) Expanded Law of Excluded Middle. The strategies of the original Logic
Theorist cannot prove this

(P + 1llP) 1P
P

8. (5pts) Pierce’s Law. Unprovable by Logic Theorist, and tricky for ‘natural’
systems.

NP + cd --) PI + P P
1P

9. (6pts) A problem not solvable by unit resolution nor by ‘pure’ input resolution.

I(P + 67) & mP + 4) & P+4
(P + 1411 -+ TOP + 14)

1P + 4
p+14
1P + 14

10. (4pts) A reasonably simple problem with premises, designed to see whether
‘natural’ systems correctly manipulate premises.

q-+r
r + (P & 4)

iq + r
ir+p
lr + q

P -+ (4 + 4 lp+q+r
p-4 P+4

11. (Ipt) A simple problem designed to see whether ‘natural’ systems can do it
efficiently (or whether they incorrectly try to prove the + each way)

(P d-b P) P
1P

SEVENTY-FIVE PROBLEMS FOR TESTING ATP 195

12. (7pts) The ‘hardest’ propositional problem found in Kalish and Montague
(1?64), according to Pelletier (1982)

Kp - 9) * 4 - [I-J ++ (4 - dl P+q+r
iq+ip+r
ir+ip+q
ir+iq+p
p+iq+r
p+ir+q
q+r+ip
ir + iq + ip

Distribution Laws can be very tricky for ‘natural’ systems. (They are assumed by
resolution systems in the conversion to clause form). The next few problems list some

13. (5pts)

b + (4 & dl t* [(p + 4) 8~ P+9
(P + r>l

p+r
1P
iq + ir

14. (6pts)

(P +-+ 4) * ((cl + 1P) & 1P + 4
(14 + PII

14+P
lq+lP
P+4

15. (5pts)

(P + 4) ++ (14 + 4) 1P + 4
P
14

16. (4pts) A surprising theorem of propositional logic

(P + 4) + (4 --, P) P
14
4
1P

17. (6pts) A problem which appears not to be provable by Bledsoe et al. (1972).
(For details of why not, see Pelletier (1982), p. 135f).

((P & (4 -+ 4) + 4 c* 1p+q+s
OP + 4 + 4 &
(lp + ir + s))

196 FRANCIS JEFFRY PELLETIER

1p+1r+s

P
iq + r
1S

Monadic Predicate Logic
Problems in the monadic predicate logic are not much more difficult than those in the
propositional logic. All that’s required is a method of handling quantifiers correctly
(by finding appropriate instances or substitutions). The problems in this section are
designed to test whether this happens.

18.

19.

20.

21.

(lpt)

(EY)(W(FY + Fx)

(3pts)

(W (AY) (AZ) W’Y -
(Px + ex>>

(4pts)

Fx

1 E’fC4

Q4 + 1 W(x) + Q&d

Px

1Qx

[(Ax) (Ar) (Ed (A4 ((Px & Qv> + 1Py + -IQZ + RfCy, z)
(Rz & SW)) + 1Py + 1Qz + Sx

(GWW (Px & Qv> --)
W Rz)l

;
TRW

(5pts) A moderately tricky problem, especially for ‘natural’ systems with
‘strong’ restrictions on variables generated from existential quantifiers.

@N(P -, Fx)
UW(Fx + P)
(E-4 (P - Fx)

lp + Fa
lFb+p
p + Fx
lFx+lp

Some problems having to do with ‘confinement’ of quantifiers. These are often trivial
in reslution systems because they are assumed in conversion to clause form.

22. (3pts)

(W(P - Fx) --) (P - (Ax) Fx) p+lFx
Fx + 1~

SEVENTY-FIVE PROBLEMS FOR TESTING ATP

FY + P
lp + 1Fa
Fy + 1Fa

23. (4pts)

(A-4(P + Fx) ++ (P + W) Fx) p + Fx + Fy
p + Fx + Fb
1P
1Fa + p + Fy
TFa + iFb

197

The following are
Montague (1964).

24. (6pts)

1 (Ex)(Sx &

some more tedious monadic logic problems from Kalish and

Q4
(AxW’x -+ <Qx + R-4)
l(Ex)Px + (Ex)Qx
(Ax) (Qx + Rx --) Sx)
(Ex)(Px & Rx)

25. (7pts)

(Ex) P.u Pa
(Ax) (Fx + (1 Gx & Rx))
(Ax)(Px + (Gx & Fx))

-IFX + -IGX + -IRX
--iPx + Fx
1Px + Gx
1 Px + Qx + Pb [(Ax)(Px + Qx) +

(Ex)(Px & Rx)]

(W(Qx & Px)

26. (7pts)

(Ex)Px ++ (Ex) Qx
GW(AY)V’X & QY -+ (fi - SY))
[(Ax)(Px -+ Rx) +-.

(Ax)<Qx + WI

1Sx + 1Qx
1 Px + Qx + Rx
Pa + Qb
1Qx + Sx
-IRX + Sx
-IPX + TRX

1 Px + Qx + Rb
1Qx + TPX

TPX + Qa
1Qx + Pb
-IPX + lQy + 1Rx + Sy

1Px + 1Qy + 1Sy + Rx
-IPX + Rx + 1Qx + Sx
1 Px + Rx + PC
1Q + Rx + -IRC
Qd+ 1Qx + Sx
Qd + PC

198 FRANCIS JEFFRY PELLETIER

27. (6pts)

(Ex)(Fx & -I Gx)
(Ax)(Fx -, Hx)
(Ax) (Jx & Ix -+ Fx)
[(Ex)(Hx & 1 Gx) +

(Ax)(Zx + 1 Hx)l
(Ax) (Jx + -I Ix)

Qd i- -tRc
TSd + -IQX + Sx
TSd + PC
TSd -I- -IRC

Fa
1Ga
-IFX + Hx
-IJX + -IZX + Fx

1Hx + Gx + -1Zy1Hy
Jb
Zb

28. (8pts)

KAx)Px -+ (Ax) Qxl
KW<Qx + Rx) -+

(W(Qx & WI
[(Ex)Sx + (Ax)(Fx + Gx)]
(Ax) (Px 8z Fx + Gx)

1Pa + Qx
1Qb + Qc

1Qb + SC
TRb + Qc
TRb -I- SC
-ISX + 1Fy + Gy
Pd
Fd
TGd

29. (7pts)

(Ex)Fx & (Ex)Gx
[(Ax)(Fx + Hx) &

Fa
Gb

(Ax)(Gx + Jx)] - 1Fx + Hx + 1Fy +

KW(AY) (Fx & GY -, Hx & JY)I 1Gz + Hy
-IFX + Hx + 1Fy + 1Gz + Jz
-I Fx + Hx + Fe + Gf
-IFX + Hx + Fe + 1Jf
1Fx + Hx + 1He + Gf
-IFX + Hx + 1He + 1Jf
-IGX + Jx + 1Fy + lGz+ Hy
1Gx + Jx + 1Fy + 1Gz + Jz
-I Gx + Jx + Fe + Gj
-IGX + Jx + Fe + 1Jf
-IGX + Jx + iHe + Gf
1Gx + Jx + 1He + iJf
Fc + 1Fx + -IGY + Hx

SEVENTY-FIVE PROBLEMS FOR TESTING ATP 199

30. (6pts)

(Ax) (Fx + Gx + 1 Hx)
(Ax)((Gx + 1Zx) + Fx & Hx)
(Ax)Zx

31. (5pts)

1 (Ex)(Fx & (Gx + Hx))
(Ex)(Zx & Fx)
(Ax)(l Hx + Jx)
(Ex)(Zx & Jx)

32. (6pts)

(Ax)(Fx & (Gx + Hx) -+ Ix)
(Ax)(Zx & Hx + Jx)
(Ax)(Kx + Hx)
(Ax)(Fx & Kx -+ Jx)

Fc + TFX + -ICY -I- Jy
Fc + Fe + Gf
Fe + Fe + 1 Jf
Fc + 1 He + Gf
Fe + THe + 1Jf
Gd + 1Fx + 1Gy + Hx
Gd + 1Fx + 1Gy + Jy
Gd + Fe + Gf
Gd + Fe + TJf
Gd+ 1He + Gf
Gd + 1He + TJf
-IHC + TJd + 1Fx +

1Gy + Hx
-IHC + 1Jd + 1Fx +

1Gy + Jy
-IHC + TJd + Fe + Gf
1Hc + 1Jd + Fe + -IJ~
1Hc + Jd + 1He + Gf
1Hc + -tJd + -tHe + iJf

--IFx + 1Hx
Gx + Fx
1Gx + 1Hx
Gx -I- Hx
Ix + Fx
Ix + Hx
7 la

TFX + -IGX
TFX + 1Hx
la
Fa
Hx + Jx
1Zx + 1Jx

1Fx + -IGX + Ix
1Fx + -tHx + Ix
1Zx + 1Hx + Jx
TKX + Hx
Fa
Ka
iJa

200 FRANCIS JEFFRY PELLETIER

33. (4pts) This is a monadic predicate logic formulation of problem (17) above.

(Ax)(Pa & (Px + Pb) + PC) * 7 Pa + Px + PC + Py
(Ax)((l Pa + (Px + PC)) 8~ -lPC

(1 Pa + (-I Pb + PC)))
1Pa + Px + PC + 1Pd + Pb
TPa + TPb + PC
Pa
TPe + Pb + TPa + Px + PC
TPe + Pb $ -rPd

34. (IOpts) Andrew’s Challenge (cf. de Champeaux (1979)). The problem is logically
simple, but its size makes it difficult. (The conversion to clause form is left as an
exercise for the reader, about 1600 clauses.)

KW(AYW’X +-+ PY> -
((WQx ++ WY) f’y)l c*
KW(Av)(Qx * QY) ++
@Wx ++ (AY)PY)I

Full Predicate Logic (without Identity and Functions)
Once again we start with some problems to determine whether the quantifiers are
being handled properly.

35. (2pts)

W (EY) WY --) (Ax) WY) PXY)

36. (3pts)

(Ax) (EY) FXY
(A-4 (EY) GXY
(Ax)(A~)@‘xy + GXY -,

(Az)(Fyz + Gyz + Hxz))
(A-4 (EY) HXY

37. (3pts)

(AZ) (Ew) (Ax) (EY) Wz -+ PYW) &
Pyz & (Pyw + (Eu)Quw)]

(Ax) (AZ) [1 Pxz + (EY) QYZI
(E-9 (EY) QXY --) (Ax) Rxx
(Ax) @Y) RXY

PXY
1 Pf(x, YMX? Y)

@f(x)
G&d
1 Fxy + -I Fyz + Hxz

1 Fxy + 1 Gyz + Hxz
1Gxy + 1 Fyz + Hxz
-tGxy + 1Gyz + Hxz
1 Hax

1PYX + Pf(x, YkW
Pfk Y), x
lPf(x, Y>> g(x) + Q&G Y), &>
f'x, Y + Qh Y>, x
lQx,y + &z
7Ra.x

SEVENTY-FIVE PROBLEMS FOR TESTING ATP 201

38. (4pts) Here is a full predicate logic version of problems (17) and (33). Conver-
sion to clause form left as an exercise.

{(Ax)[Pa & (Px + (Ey)(Py & Rxy)) + (Ez)(Ew)(Pz 8~ Rxw & Rwz)] H
(Ax)[(-I Pa + Px + (Ez) (Ew) Pz & Rxw & Rwz)) &
(1 Pa + I (Ey)(Py & Rxy) + (Ez)(Ew)(Pz & Rxw & Rwz))]]

Some problems in set theory can be represented in first order logic using the predicate
‘F’ to stand for ‘is and element of’. Here are some reasonably simple ones.

39.

40.

41.

42.

43.

(3pts) Russell’s paradox: there is no ‘Russell set’ (a set which contains exactly
those sets which are not members of themselves)

-I 0-3 WY) (FYX t* 1 FYY> I Fxa + I Fxx
Fix + Fxa

(5pts) If there were an ‘anti-Russell set’ (a set which contains exactly those sets
which are members of themselves), then not every set has a complement.

(Ey)(Ax)(Fxy c-t Fxx) -+ I Fxa + Fxx
1 (Ax)(Ey)(Az)(Fxy ++ 1 Fzx) 1 Fxx + Fxa

1 F.-u, f(x) + I Fyx
Fyx + Fx, f(x)

(6pts) The ‘restricted comprehension axiom’ says: given a set z, there is a set all
of whose members are drawn from z and which satisfy some property. If there
were a universal set then the Russell set could be formed, using this axiom. So
given the appropriate instance of this axiom, there is no universal set.

(AZ) (EY) (A-4 WY c* 1 Fk f(Y) + FXY
(Fxz & I Fxx))

I (Ez)(Ax) Fxz ~Fx,f(y) + IFXX
1 Fxy + Fxx + Fx, f(y)
Fxa

(6pts) A set is ‘circular’ if it is a member of another set which in turn is a member
of the original. Intuitively all sets are non-circular. Prove there is no set of
noncircular sets.

1 (EY) (Ax) WY t*
1 (Ez) (FXZ & Fzx))

1 Fxa + Fxy + -I Fyx

Fxf(x) + Fxa
Ff(x)x + Fxa

(5pts) de Champeaux (1979). Define set equality (‘Q’) as having exactly the same
members. Prove set equality is symmetric.

VWAY)(QXY - (W(Fzx * Fzy)) ~Qxy + IFZX + Fzy
W)@Y)(QXY ++ QYX) I Qxy + 1Fzy + Fzx

t-l-(x, Y), x + t’f(x, Y), Y + QXY
1 ET@, Y), Y + -I F/-(x, Y), x

+ QXY

202 FRANCIS JEFFRY PELLETIER

Qab + Qba
1Qba + 1Qab

Here are some problems taken from Kalish & Montague (1964)

44. (3pts)

(AW-x + (EY)(GY & HXY) & 1 Fx + Gf(x)
@Y) (GY & 1 fWI

(WJx 8~ (AYWY + fW1
(Ex)(Jx & -I Fx)

1 Fx + Hx, j-(x)
1 Fx + Gg(x)
1 Fx + 1 Hx, g(x)
Ja
1Gx + Hax
-IJX + Fx

45. (5pts)

(Ax)(Fx & (Ay)[Gy & Hxy + -I Fx + Gf(x) + -I Gy +
1Hxy + Ky

JXYI + (Ay)(Gy & HXY --* KY)) 1 Fx + Hx,f(x) + 1Gy +
1Hxy + Ky

-I (EYWY & KY) 1Fx + lJx,f(x) + 1Gy +
1 Hxy + Ky

(W W & (AYWXY -, LY) &
(AY)(GY & HXY --) JxY)~

(W W & 1 (EY)(GY & Hxy))

1Lx+-lKx

Fa
1 Hax + Lx
-IGX + 1Hax + Jax
1 Fx + Gg(x)
-I Fx + Hx, g(x)

46. (6pts)

(Ax) (Fx dc (Ay) [Fy & Hyx -+

GYI -+ Gx)
{(Ex)(Fx & 1 Gx) -,

(Ex)(Fx & 1 Gx & (Ay)(Fy &
-I GY --, Jxy))

(Ax)(Ay)(Fx & Fy & Hxy +
1 Jyx)

(Ax)(Fx + Gx)

1 Fx + Ff(x) + Gx

1 Fx + Hf(x) + Gx
-I Fx + lGf(x) + Gx

1 Fx + Gx + Fa

1Fx + Gx + iGa
-I Fx + Gx + 1 Fy + Gy + Jay
-IFX + 1Fy + -~Hxy + 1Jyx
Fb
1Gb

SEVENTY-FIVE PROBLEMS FOR TESTING ATP 203

A problem which has gotten some considerable play in the literature is ‘Schubert’s
Steamroller’, after Len Schubert. (See Pelletier (1982), Walther (1985), McCune
(1985), Stickel (1986)). The problem presented in English is this:

47. (10pts) Wolves, foxes, birds, caterpillars, and snails are animals, and there are
some of each of them. Also there are some grains, and grains are plants. Every
animal either likes to eat all plants or all animals much smaller than itself that
like to eat some plants. Caterpillars and snails are much smaller than birds,
which are much smaller than foxes, which in turn are much smaller than wolves.
Wolves do not like to eat foxes or grains, while birds like to eat caterpillars but
not snails. Caterpillars and snails like to eat some plants. Therefore there is an
animal that likes to eat a grain-eating animal.

The previously mentioned authors symbolize the problem (especially the
conclusion) differently (see Stickel(l986) for details). In its original form it is as
follows: Let

PO: a is an animal
P,: a is a wolf
Pz: a is a fox
P3: a is a bird
P4: a is a caterpillar
(Ax)(P,x -+ Pox) & (Ex)P,x
(Ax)(P,x + Pox) & (Ex) P2x
(Ax)(P,x + Pox) & (Ex) P3x
(Ax)(P,x + Pox) & (Ex)P,x
(Ax)(P,x -+ Pox) & (Ex) P,x

(JWQ,x & (Ax)<Q,x + Qo4
(AW’ox -+ KAY)(Q,Y + RXY) +

(AYW’OY & SYX & fWtQi,z &
RYZ)) 4 fiy)l)

(Ax)(AYN(P,Y 8~ U’,x + PA) -.
SXY)

WHAYNP,X & PZY) + SXY)
(W(AYW’,X & P,Y) -+ sxy)
(W(AYW,X 8~ (PZY + Q,Y>> -,

1 RXYI
(Ax) CAY) ((P+ & P,Y) -+ RXY)
(Ax) CAY) W’j x & P,Y) + 1 RXY)
(A4 W’G + PA + (EY)(QoY &

fiYN
(W(EYW~X & Pov &

W(Q, z & RYZ & RxY))

P,: a is a snail
QO: a is a plant
Q,: a is a grain
S: a is much smaller than b
R: a likes to eat b

204 FRANCIS JEFFRY PELLETIER

In negated conclusion clause form, the problem becomes:

P,a

P,b
p3c
f’,d
P5e
QLf-
lP,X + Pox
1 P,x + Pox
1 P,x + Pox
-lP,x + Pox
1 P,x + P,x
lQ,x + Qox
-tP, + 7P,y + ~Rxy

lP,X + -IQ* + lP,Z +
1Szx +lQw +lRzw +
Rxy + Rxz

7P,x + 1P,y + sxy
1 P,x + 1 P,y + sxy
7P,x + 1P,y + sxy
lP,X + 1P,y + sxy
-tP,x + -tPdy + Rxy

1 P4 + Qo i(x)
1 P4x + Rx, i(x)

1 P, + Q&4
1 P,x + Rx, j(x)
lP,x + lP,y + 1Rxy
lP,x + lQ,y + 1Rxy
lP,X + 1Poy + lP,Z +

1 Ryz -I- Rxy

Full Predicate Logic with Identity (without Functions)

48. (3pts) ‘A problem to test identity ATPs’ - Piotr Rudnicki (Computing, Univ.
Alberta).

a=b+c=d
a=c+b=d
a=d+b=c

a=b+c=d
a=c+b=d
a#d
b#c

Here are some problems which straightforwardly test the identity components of
ATPs without putting much strain on the rest of the system.

49.

50.

51.

(5pts)
(Ex)(Ey)(Az)(z = x + z = y)
Pa & Pb
afb
(Ax) Px

x=c+x=d
Pa
Pb
a#b
-7Pe

(4pts)
(Ax)[Fax + (Ay) Fxy] +

(JW (AYV’XY

Fax + Fxy

1 W-W
(5pts)

(W (Ew) (Ax) CAY) BY ++
(x = z & y = w)]

1Fxy + x = n

SEVENTY-FIVE PROBLEMS FOR TESTING ATP

(W (A4 NW(AY) WY c-)
y=w)-x=z]

205

-~Fxy + y = b

x#a+y#b+Fxy
1 EO-4, Y + Y = g(x) + f(x) = x
-I W(x), Y + Y = g(x) +

Ff(x), h(x, z) + h(x, z) = z
1 v-(43 Y + Y = g(x) +

h(x, z) Z z + 1 Ff(x), h, (x, z)
Y f ‘d4 + W(x), Y +

Ff(x), h(x, z) + h(x, z) = z
Y Z g(x) + W(x), Y + f(x) = x
Y z g(x) + Ff(x), y + h 6, z> z

z + 1 U-W, W, 4
f(x) z x + m4 h(x, z) +

h(x, z) = z
f(x) # x + h(x, z) # z +

1 U-(4, h (x, 4

52. (5pts)

(W (Ew) (A-4 WY) WY ++

(x = z & y = w)]

t EN WY) WW4 (FXY (-,

~Fxy + x = y

-~Fxy + y = b
x=z)++y=w]

x#y+y#b+Fxy
1 Fy,fW + Y f g(x) +

S(x) = x
-I Fy,f(x) + Y = g(x) +

Wx, z>fW + 1 Fh(x, 4, f(x)
Y f d-4 + Fy,fW + f(x) = x
Y f g(x) + Fy,fW +

Fh(x, z), f(x) + h(x,‘.z) = z
Y f g(x) + F~,f(x) + h(x, 4 Z

z + 1 Fh(x, z), f(x)
f(x) # x + Fh(x, 4, f(x) +

h(x,z)=z
f(x) # x + h(x, z) # z -t

1 f’h 6, zlS(4

53. (7pts) [Test your converter-to-clause-form: about 146 clauses.]

(Ex)(Ey)[x # y & (Az)(z = x +
z = Y)l

206 FRANCIS JEFFRY PELLETIER

{ W (A-4 KJ+) WY) (FXY w
y=w)crx=z]tt
(W WY) KW (A4 (FXY w
x = 2) 4-b y = w]}

54. (9pts) Montague’s (1955) paradox of grounded classes.

(Ay)(Ez)(Ax)(Fxz - x = y) lf%f(.Y) + x = Y
1 (Ew) (Ax) [Fxw - (Au) (Fxu + x z Y + &f(Y)

1 Fxa + 1 Fxy + Fg(x, y), y
1 Fxa + -I Fxy + 1 Fz, g(x, y)
Fx, h(x) + Fxa
-I Fx, h(y) + Fi(y, x), x + Fya

55. (8pts) The following problem was given by Len Schubert. For ATPs with an
‘answer extraction’ mechanism, the conclusion might replaced with the query
‘who killed Aunt Agatha?’

English: Someone who lives in Dreadsbury Mansion killed Aunt Agatha.
Agatha, the butler, and Charles live in Dreadsbury Mansion, and are the only
people who live therein. A killer always hates his victim, and is never richer than
his victim. Charles hates no one that Aunt Agatha hates. Agatha hates everyone
except the butler. The butler hates everyone not richer than Aunt Agatha. The
butler hates everyone Agatha hates. No one hates everyone. Agatha is not the
butler. Therefore: Agatha killed herself.

(Ex)(Lx & Kxa)
La & Lb & Lc
(Ax)(Lx + x = a + x = b +

x = c)
(AYNWK~~ --f Hxy)
(Ax) WY) WY + -I RXY)
(Ax)(Hax + -I Hex)
(Ax)(x # b --f Hux)
(Ax)(l Rxa + Hbx)
(Ax)(Hax + Hbz)

(A4 (EY) 1 HXY
a#b
Kaa

Ld
Kda
La

Lb
LC

lLx+x=a+x=b+x=c
1 Kxy + Hxy
1Kxy + ~Rxy
-IHUX + 1Hcx
x = b + Hax
Rxa + Hbx
1 Hax + Hbx
1 Hx, f(x)
a#b
1 Kaa

The Full Predicate Logic with Identity and Arbitrary Functions

56. (4pts)

SEVENTY-FIVE PROBLEMS FOR TESTING ATP

tAx)V+ + VW1

57. (2pts)

(Ax)(Ay) (Az)[Fxy & Fyz + Fxz]

t’f@, b),fta, 4

58. (3pts)

tWtA~lfC4 = d A

(A4 (A~lftftx)) = fkt YN

59. (3pts)

60. (4pts)

(A4 W> f(x) c-, (EY) [(AZ) WY -+

k f(x)) & FXYI

207

1Fx + y #f(y) + Fy +
1 Fz + Ff(z)

1Fx + y #f(y) + Fy + Fu
1Fx + Y Z f(r) +

Fy + b = f(b)
1F.x + Y #f(~) +f(~) + 11%
Fc + 1 Fx -t- Ff(x)
Fc + Fa
Fc + b = f(b)
Fc + TFb
1 Ff(c) + 1 Fx + Ff(x)
1 If(c) + Fu
1 Ff(c) + b = f(b)
1 Ff(c) + 1 Fb

Ffta, b), f@, 4
Wtb, 4, Aa, 4
1Fxy + 1 Fyz + Fxz
lFf(a, b),f(a, 4

f(x) = g(y)
f(ft4) # fk(b))

I Fx + 1 Ff (x)

EK4 + F(x)
1 F(x) + t?-(x)

f&f(a) + lf’by + Fy,fW

Fa, f (a) + Fa, b
Fg(x), x + 1 Fax + 1 Fyb +

FY, f (4
Fg(x), x + 1 Fax + Fab
F&x), x + 1 Fax + 1 Fu, f(a)
1 Fg(x), f(a) + 1 Fax +

1 Fb + FY, J-64
1 Fg(x), f(a) + 1 Fax + Fab
1 Fg(x), f(a) + 1 Fax +

1 Fa, ft4

208 FRANCIS JEFFRY PELLETIER

Having warmed up with some straightforward examples, let’s turn our attention to
some more difficult ones.

61. (6pts)

(Ax) WY) (Azlf(x~ f(Y, 4) = f&T f(Y, z)> = f(f(x, Y) 4
f(f(x, YIP 4

(Ax) CAY) (A4 (A4 f(a, f(h fk 0) Z
fk f(YY fk w))) = f(f(f(G 8, 4 4
f(fuh YL 4 w

62. (Spts) Here is the original formulation in Bledsoe et al. (1972), p. 59 of the
problem mentioned in (17), (33), and (38).

[Fu & (Ax)(Fx -+ F’(x))] +-+ 1 Fu + Fb + Ff(f(x)) + Fy +
Ff(f(y))

(W[[b f’a + F.x + Ff (f Cd 8~

b J’a + lFf(x) + Ff(fCMl

1Fu + Fb + Ff(f(x>) +
lFf(y) + Ff(f(~))

1 Fu + Fb + Ff(f(x)) + 1Fz +
Ff (Y)

-I Fa + Fb + Ff (f(x)) +

1Ff (f (4)
1Fa + lFf(b) + Ff(f(x)) +

FY + Ff(f(y))
-IFQ + lFf(b) + Ff(f(x)) +

lFf(y) + Ff(f(y))
1Fu + -off + Ff(f(x)) +

1 Fz + Ff (4
1Fa + lFf(b) + Ff(f(x)) +

1Ff (f (4)
Fa
-IFC + Ff(c) + IFU + Fy +

Ff(f(y))
TFC + Ff(c) + 1Fa +

lFf(y) + Ff(.Ry))
1 Fc + Ff (c) + 1 Fz + Ff (z)

1Fc + Ff(c) + lFf(f(4)
1 Ff (f (c)) + 1 Fu + Fy +

Ff(f(y))
lFf(f(c)) + 1Fa + lFf(y) +

Ff(f(y))
lFf(f(c)) + 1Fz + Ff(z)
1 Ff (f (c)) + -I W(f (4)

Here are three group theory problems, published I think, by Larry Wos (but I cannot
locate where). Consider

SEVENTY-FIVE PROBLEMS FOR TESTING ATP 209

(4 ;;I ty) GWf(ftx, YL 4 = f(x,

(b) (A&a, x) = x
(4 (W(E~lft Y, -4 = a
63. (6pts) Show that (a), (b), (c) entail

(A-4 (AY) (A4 V-(x, Y) = ftz, Y) +
x = z]

64. (6pts) Show that (a), (b), (c) entail
(A4 tA.14 VI Y, 4 = a +

f-(x, Y) = 4

65. (8pts) Show that (a) and (b) entail

[(A-X)/(X, x) = a --*
(Ax) tWf(x, Y) = f(Y, 41

f(f(x, Y)? 4 = fk f-t Y, 4)

f@, 4 = x
f(gtx), 4 = a

f@, cl = .m 4

b#d

ftc, 4 = a

ftb, c) # a

f(X, x) = a

S(h 4 z ftc, b)

Charles Morgan (see AAR Newsletfer #3) has suggested a method of constructing
difficult function-problems out of easy propositional logic ones. To do this, take a
propositional logic theorem, eg (11 P -+ P), treat the propositional letters as objects
which can be quantified over, encode the sentence operators (1 and -+, here) as
functions, and treat ‘is a theorem’ as a (monadic) predicate ‘T’. Thus, this theorem
would become (Ax) E(n(n(x)), x). Do this for every axiom of the logic under con-
sideration, and treat the results as premises for every argument. The rules of inference
of the logic are treated in this manner by saying that if the premise of the rule has ‘7”
applied to it then the conclusion of the argument has ‘7” applied to it. So for the rule
modus ponens: if P and (P -+ Q) are derivable, then so is Q, we would convert this
to (Ax)(Ay)(Ti(x, y) & TX -+ Ty), and treat it as a premise of every argument. That
this can generate quite difficult problems out of very simple ones is demonstrated by
the following examples of Morgan’s. The initial propositional logic has three axioms
plus modus ponens:

(4 tAxK%9 TW, 4 Y, -4))
(b) (Ax) (+)(Az) T(iG(x, i(Y, z)), Wx, Y), 0, z))))
(4 (Ax) MY) Tt WW 4 Y)), it Y, 4))
(4 (Ax)ObWW, Y)) & T(x) -+ Tt Y))

66. (7pts) From (a)-(d) prove

(Ax) Wtx, n(W))
67. (7pts) From (a)-(d) prove

(Ax) WtntW)~ 4

210 FRANCIS JEFFRY PELLETIERE

68. (8pts) Replace (c) with (Ax)(Ay)T(i(i(y, x), i(n(x), n(y)))) and prove
(Ax) Wtx, ~Mx)>N

Morgan’s method is completely generalizable. The examples above used as an ‘object
language’ only + and 1, but we could have added on other connectives together with
appropriate definitions or axioms. For example, we might add on t, together with one
or more of the definitions oft, in terms of + and 1 and perhaps with new axioms
for c, and perhaps with new rules of inference for CI. For instance, we might add on

WWWt Wtx, Y)) & TM Y, 4) t* T@(x, Y)))
and/or (A-4 (AY) Wtetx, Y), Nitx, Y), n(i(Y, 4)))))
and/or GWtAMx, Y) = Wi(x, Y), NY, 4)))
and/or (Ax)(AY)UM~~ YN & T(x) + T(YN
and/or WW!Mx, Y) = 444, nt Y))
and/or tAx)tA~Mx, Y) = ety, 4
and/or (Ax) GWMx, Y)) = 4x, 4 Y)>

and the like. With sufficient of these, you can try to prove (the translations of)
arguments using +, 1, t+. They are very difficult. But the method can be generalized
even further and extended to other logics which include propositional logic as a part.
Let us suppose we have a characterization of the propositional logic using Morgan’s
method. That is, suppose we have translated a complete set of propositional axioms
and rules of inference, such as the ones mentioned before Problem 66, into the
function-notation just mentioned. Now suppose we wish to consider modal prop-
ositional logics. These logics introduce one new propositional operator, L (logical
necessity). The modal system T can be described as

(a) propositional logic axioms
(b) Modus Ponens
(4 UP + 4) + (LP + Ld
(4 LP + P
(e) if p is a theorem, then Lp is a theorem.

Morgan’s method as described shows how to get the translation of (a) and (b). Thus
the function-notation version of system T would be arrived at by introducing a new
function symbols for L, say ‘b,‘, and an axiomatization of system T would be

(a) (the translations of the propositional logic axioms)
(b) (the translation of Modus Ponens)
tc) (Ax) WY) TW, (4x, Y)>, it& (4, h t YNN
(4 (Ax) TG(b (4 4)
te) (Ax) t T(x) -, T(h (4))

69. (9pts) Using the (a)-(e) just given as premises, translate simple theorems of the
modal system T and prove them. For example:

(Ax) Wth t-4, 4 (WNN

SEVENTY-FIVE PROBLEMS FOR TESTING ATP 211

70. (open problem) The example in (69) used the modal system T, and ‘6, ’ was the
function corresponding to the L of system T. Now let’s consider the modal
system K, and let’s represent its L by ‘bz’. The axioms and rules of inference for
K are translated as

(a) (translations of the propositional logic axioms)
(b) (translation of Modus ‘Ponens)
(f-1 (A.4 (AA TO@, (i(x, .Y)), @, (4, bd A))>
W (A-4 VW -+ T(b, (4))

In Pelletier (1985) I posed the question of whether there might not be a way to ‘define’
the b, function in terms of the other functions (including b,), and a way to ‘define’ the
b, function in terms of the other functions (including b,), so that if X was a theorem
which mentioned ‘b, ’ but not ‘b2’, then the result of replacing ‘b,’ (and its argument)
by its ‘definition’ would result in a theorem. [And conversely for a theorem Y which
mentioned ‘b2’ but not ‘b,‘.] These ‘definitions’ were also to have the following feature:
letfi be the ‘definition’ of ‘b,’ in terms of ‘b,’ and f2 be the ‘definition’ of ‘bi in terms
of ‘b,‘. Then

(h) (A-4 Wx, h (fi (4)))
0) (A-4 T(& h (fi (4)))

were also to be true. That is, the result of ‘translating’ any sentence purely of one of
the sublanguages into the other sublanguage can be ‘translated’ back into the first
sublanguage and the result will be provably equivalent to the original sentence.
Therefore, given (a)(i) the problem is to first determine whether there are suchf’s and
second find out what they are.

Some Problems for Studying the Computational Complexity of ATP’s

The difficulty in constructing problems for studying the complexity of the proof
system of an ATP is to describe a set of problems whose complexity can independently
be characterized in terms of some metric which can be varied and which does not
introduce any ‘side effects’ into the resulting proofs. Various attempts to state such
a set of problems have usually focussed on (a) number of clauses, (b) number of
symbols, (c) number of distinct symbols. It is extremely difficult to guarantee in
advance that the increase in proof size which is observed when (say) the number of
clauses is increased is due solely to the increase in number of clauses, as opposed to
being also influenced by some hidden increase in ‘number of tricks required’ (say). The
following problem-types are designed to give a measure of complexity which does not
involve any other types of difficulty as the problems get more complex.

71. (U-problems, after Alasdair Urquhart).
Consider the following problems (the sub-problem of conversion to clause form
is left to the reader).

212 FRANCIS JEFFRY PELLETIER

The number of distinct sentence letters in U,, is n. the number of occurrences of
sentence letters is 2n. The number of embedded W’S is (2n-1). The number of
clauses goes up dramatically as U,, increases, but I don’t think it shows that the
problems are dramatically more difficult as we go from U, to U,, say. Rather,
it’s that the awkward clause form representation comes to the fore most dra-
matically with embedded biconditionals. On all other measure of increase of
complexity from U, to U,, one should say that the problems increase linearly in
difficulty. So, given that the U-series of problems increases linearly in difficulty,
compare the increase of your ATP along the dimensions of CPU time, size of
proof, number of program statements executed, etc. [Alasdair Urquhart
informs me that the proof size of any resolution system increases exponentially
with increase in n].

72. (Pigeonhole problems - cf. Cook and Reckhow 1979).
Suppose there are n holes and (n + 1) objects to put in the holes. Every object
is in a hole and no hole contains more than one object. Pictorially, we can
represent this (for the 4 object, 3 hole problem) as:

A

holes
B C

II
I I I
I I I

I I I I
I I I I

21 I I I
objects 1 I- I I

I I I I
31 I I I

I I I I
I I I I

LI I I I
-1 I I

Each cell (i,i) says that the ith object is in thejth hole. For each cell use a
different sentence letter (P, , P,, . . .). for the 4-object, 3 hole problem we might
assign the letters in this fashion:

SEVENTY-FIVE PROBLEMS FOR TESTING ATP 213

holes
A B c

I I I I
1 I Pl I PZ I 4 I

I I I I
I I I I

21 PL I ps I '6 I
objects I I I -I

I I I I
31 p7 I pa I ps I

I I I I
I I I I

1 I P
10 I P,, I P 12 I

Ps for example says that object 3 is in hole B. Let us now state the problem:
‘Each object is in a hole’ becomes (for this example)

G-4 4 + PI + p,
(b) P4 + Ps + f’6
(c) p, + p, + p9
(4 P,o + P,, + f’,,

‘No hole has more than one object in it’ becomes

(e) 7 P, + 7 P4
(f) 1 P, + 1 P,
(g) lP, + lPl0
(h) lPc, + lP,

for hole A

(i) 7 P4 + i PI0
(3 1 P7 + 1 PI0

(k) -IP> + 1Ps
(1) 1 P* + 1 Pg
04 lP2 + 1Pll
(n) 7 P, + 7 P,

for hole B

(0) lP5 + lpi,
(PI lPt7 + lP,, I

(4) 1 p3 + lP6
(r) i P3 + 7 P9)
(9 lP3 f lP,*
(t) 1 Ps + 1 Py

for hole C

(4 lP6 + lP12
(VI 1 p9 + 1 PI, J

The set of clauses (a)-(v) are inconsistent, as will any set be which is generated
this way when the number of holes is less than the number of objects. Picking
the number of objects to be one greater than the number of holes will yield the

214 FRANCIS JEFFRY PELLETIER

‘hardest’ problem (for that number of holes), so we will just consider the ‘n-hole
problems’, assuming that the number of objects is (n + 1). It will be noticed that,
for an n-holes problem, the number of distinct sentence letters is (n2 + n) and
the number of clauses is

n3 + n*
- + (n + 1)

2

Thus the number of sentence letters increases quadradically and the number of
clauses increases cubically. In any case, it seems that the ‘difficulty’ of the n-hole
problems increases polynomially with n. See if your ATP can emulate that.

73. (Predicate logic pigeon hole problems). Problem (72) represented the n-hole
problems by distinct sentence letters. This problem can also be represented by
selecting a predicate ‘0’ meaning that x is an object, and a predicate ‘H
meaning that x is a hole. Let Zxy be a 2-place relation saying that (object) x is in
hole y. The 3-hole problem then becomes

“(a) (Ex)(Ey)(Ez)(Ew)[Ox & Oy & Oz & Ow & x # y & x # z & x # w &
y # z&y # wc4z # WI

(b) (Ex)(Ey)(Ez)[Hx&ZZy&ZZz&x # y&x # z&y # z&
(Aw)(Hw --) w = x + w = y + w = z)]

(4 (Ax)(Ox + @Y) WY & Zxy))

(d) (Ax(ZZy -, (Ay)(Az)(Oy & Oz & Zyx & Zzx + y = z))

These four formulas (a)-(d) are inconsistent, as are any generated in this
manner. Test how your ATP increases in effort spent as the number of holes
increases.

74. (Arbitrary graph problems. Due to Tseitin (1968), see Galil (1977) for an
expository version. See also Urquhart (unpublished a, b). My thanks to Urqu-
hart for explaining them to me.) Consider a graph with the edges labelled. For
example

A B

c e 0 E

Assign 0 or 1 arbitrarily to nodes of the graph. For each node of the graph, we
associate a set of clauses as follows:
(1) every label of an edge emanating from that node will occur in each clause

(of the set of clauses generated from that node)
(2) if the node is assigned 0, then the number of negated literals in each of the

generated clauses is to be odd. Generate all such clauses for that node.

SEVENTY-FIVE PROBLEMS FOR TESTING ATP 215

(3) if the node is assigned 1, then the number of negated literals in each of the
generated clauses is to be even. Generate all such clauses for that node.

Tseitin’s result is this: the sum (mod 2) of the O’s and l’s assigned to the nodes
of the graph equals 1 if and only if the set of all generated clauses is inconsistent.
For example, if we assign the node at the top of the above graph a 1 and all
others 0, then the set of all generated clauses will be inconsistent. The clauses
generated are:

(a) A + B
(b) 7A + -TB

from top node, which was assigned 1, so the
number of negated literals is even in each clause.

(c)A+C+1D -

(d) A+lC+D

i

from left node, which was assigned 0, so the

(e)iA+C+D
number of negated literals is odd in each clause

(f)lA+lC+lD
(generate all possible such clauses)

(8) B+C+lE)
(h) B+lC+E
(i)iB+C++

(which was assigned 0)

(j)iB+lC++E
(k) D + 1 E
(1) 1 D + E I generated from bottom node

Clauses (a)-(l) are inconsistent: prove that with your ATP. Now, we can
increase the complexity of the graph in a number of different ways. Pick a
‘natural’ way and see how your ATP’s proof increases CPU or a number of
resolvants generated, etc.

75. According to Alasdair Urquhart, the U-problems of problem (71) can be
graphically represented by the method of problem (74). The relevant graph is

where the double-circled node is assigned 1 and all others are assigned 0. Have
your ATP prove this. (Number of vertical lines is number of distinct sentence
letters).

Acknowledgements

I am grateful to a number of people. The system described in Pelletier (1982) that was
used to verify which problems in this paper were harder than which others, was jointly
developed by myself and Dan Wilson (now of Mirias Research of Edmonton).
Further assistance on this system (1983-85) was aided by Gilles Chartrand and Randy
Kopach. Len Schubert has a constant source of helpful critique, as well as the author
of problems (47) and (55). David Sharp (Philosophy, University of Alberta) also

216 FRANCIS JEFFRY PELLETIER

suggested which problems from Thomason (1972) students found difficult. Some of
the these problems occur intermingled in the ones given under ‘identity’. Charles
Morgan explained to me his method (which was described (66)), and pointed out that
it could be used to solve the problems of Pelletier (1985) - see problem (70) above.
Finally, and especially, I offer my thanks to Alasdair Urquhart for numerous dis-
cussions about ATP - both its theory and specific problems. It was he who interested
me in ways to test the proof complexity of various ATP systems. The problems
(71)475) are directly due to him. I am also grateful to him for showing me Urquart
(unpublished a, b), and telling me about Tseitin (1968). Thanks also to Sven Hurum
(Computing, University of Alberta) for allowing me use of his ‘convert to clause form’
program. He warns that it is not perfect in its elimination of subsumed clauses. (But
it sure beats doing it by hand!)

I gratefully acknowledge the assistance of the Canadian National Science and
Engineering Research Council grant A5525 in the research involved in my ATP
studies.

References
Bledsoe, W., Boyer, R., and Henneman, W. (1972) ‘Computer proofs of limit theorems’, Arfifciul Infel-

ligence 3, 2140.
Cook, S. and Reckhow, R. (1979) ‘The relative efficiency of propositional proof systems’, J. Symbolic

Logic 44, 36-50.
De Champeaux, D. (1979) ‘Sub-problem finder and instance checker: two cooperating preprocessors for

theorem provers’ IJCAI 6, 191-196.
Galil, Z. (1977) ‘On resolution with clauses of bounded size’, SIAM J. Computing 6, 444459.
Kalish, D. & Montague, R. (1964) Logic: Techniques of Formal Reasoning, World, Harcourt & Brace,
Lusk, E. and Overbeek, R. (1985) ‘Reasoning about equality’, J. Aufomafed Reasoning 1, 209-228.
McCharen, R., Overbeek, R., & Wos, L. (1976) ‘Problems and experiments for and with automated

theorem-proving programs’, IEEE Trans. Compufers C-25(8), 773-782.
McCune, W. (1985) ‘Schubert’s Steamroller Problem with linked UR-resolution’ Assoc. Aufomafed

Reasoning Newsleffer 4, 4-6.
Montague, R. (1955) ‘On the paradox of grounded classes’ J. Symbolic Logic 20, 140.
Newell, A., Shaw, J., and Simon, H. (1957) ‘Empirical explorations with the logic theory machine: a case

study in heuristics’. Reprinted in E. Feigenbaum and J. Feldman (eds.) Computers and Thoughr
(McGraw-Hill, N.Y.) pp. 279-293 (1963).

Newell, A. and Simon, H. (1972) Human Problem Solving, (Prentice-Hall, Englewood Cliffs).
Pelletier, F. J. (1982) ‘Completely nonclausal, completely heuristically driven automatic theorem proving’,

Technical Report TR82-7, (Dept. of Computing Science, Edmonton, Alberta).
Pelletier, F,. J. (1985) ‘Six problems in translational equivalence’, Logique et Analyse 108, 423434.
Siklossy, L., Rich, A., and Marinov, V. (1973) ‘Breadth first search: some surprising results’, Artificial

Intelligence 4, l-27.
Stickel, M. (1986) ‘Schubert’s steamroller problem: formulations and solutions’, J. Automated Reasoning

2, 89-104.
Thomason, R. (1972) Symbolic Logic (Prentice-Hall, Englewood Cliffs).
Tseitin, G. S. (1968) ‘On the complexity of derivation in propositional calculus’, reprinted in J. Siekmann

and G. Wrightson (eds.) Aufomafion of Reasoning (Springer-Verlag, Berlin).
Urquhart, A. (unpublished a) ‘The complexity of Genzen systems for propositional logic‘.
Urquhart, A. (unpublished b) ‘Hard examples for resolution’.
Walther, C. (1985) ‘A mechanical solution of Schubert’s steamroller by many-sorted resolution’, Artificial

Intelligence 26, 217-224.
Whitehead, A. and Russell, B. (1910) Principia Mafhemafica, Vol. I. (Cambridge UP, Cambridge).

