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The purpose of this note is to provide a graduated selection of problems for use in 
testing an automatic theorem proving (ATP) system. Included in these problems were 
the ones I have used in testing my own ATP system (Pelletier 1982, and more recent 
updates to the system). Some of the problems, especially some of the more difficult 
ones described at the end of this note, are due to discussions with Len Schubert 
(Computing, Univ. Alberta), Alasdair Urquhart (Philosophy, Univ. Toronto), and 
Charles Morgan (Philosophy, Univ. Victoria). 

People who have tried to compile lists of problems for ATPs in the past (for 
example, the Association for Automated Reasoning) have discovered that the pro- 
duction of such a list is difficult because (a) what is ‘easy’ for one system might not 
be for another, (b) researchers are understandably shy about saying what problems 
their ATP might have, unless they know that it is so difficult that any ATP will have 
trouble with it, (c) especially with problems at the ‘easy end’ of the scale, researchers 
are prone to think that any ATP system can prove it and so there is no call to write 
them up, (d) the goals of ‘natural’ system ATPs and resolution-based ATPs are 
different: the former tries to produce a ‘natural’ proof usually without prior conver- 
sion to clause form. This means that some problems, especially at the ‘easy end’ of the 
scale, will be trivial for resolution systems but difficult for ‘natural’ systems. On the 
other hand, proponents of ‘natural’ systems think that at the ‘difficult end’ of the 
scale, there will be problems within the grasp of the ‘natural’ systems which are 
beyond the reach of resolution systems. It is therefore difficult to even give a 
graduated scale of problems. All this has led to publication of dificuft problems, but 
not to publication of lists of problems suitable for developing an ATP. The locus 
clussicus of problems is McCharen et al. (1976) which contains a wide range of 
problems all in clause form. More recently, the Journal of Automated Reasoning has 
instituted its ‘Problem Corner’. A notable item herein is Lusk and Overbeek (1985). 
All of us involved in ATP wish to encourage others - graduate students, for example 
- to look into the field. But where is such a person to start? It is with such neophyte 
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ATPers in mind that the following list is offered. None of these problems will be the 
sort whose solution is, of itself, of any mathematical or logical interest. Such ‘open 
problems’ are regularly published in the Newsletter of the Association for Automated 
Reasoning. Most (but not all) of my problems can be found in elementary logic 
textbooks - but they have been chosen either because logic students find them 
difficult, or because previous ATP systems have reported difficulties in establishing 
them, or because they have some interesting connection with other areas of math- 
ematics (such as set theory). The judgements of difficulty are my own, and are based 
primarily on my years of teaching elementary logic (so the judgements reflect how 
difficult beginning students find the problems). The scales are from 1 (easiest) to 10, 
and are relativized to the kind of problem involved. Thus; a ‘9’ in the propositional 
logic section might in fact be easier than a ‘4’ in the monadic logic section. I give 
problems in both ‘natural’ and clause form. The negated-conclusion clause form has 
eliminated tautologous clauses (but see the remark below in the ‘Acknowledgement’ 
section). As mentioned, many of the ‘easier’ problems - especially in propositional 
calculus - are trivial in resolution systems. Still, ‘natural’ systems might find them 
diverting. In either case, however, I would think that any ATP ought to produce an 
explicit proof, detailing what preceding formulas/clauses were invoked and (in the 
case of ‘natural’ systems) what rules of inference were used. When comparing two 
ATPs for efficiency (say by measuring CPU time on identical machines) it is of course 
mandatory that the systems should include the cost of conversion to clause form 
since it is only very rarely that problems ‘in the real world’ are presented in clause 
form. 

A Word on Notation 

+: if-then 
7: not 
+: or 
&: and 
cr: if and only if 
A: for all 
E: there exists 

p, 4, r, s . . . (perhaps with subscripts): propositional (sentence) letters; that is, 
O-place predicate letters. 

F, 9, . . . P, Q, , . . (perhaps with subscripts): predicate letters; context is used to 
determine the adicity. 

x, y, z, w, . . . . (perhaps with subscripts): (individual) variables. 
a, b, c, . . . . (perhaps with subscripts): individual constants; that is, O-place function 

symbols. 
f,g,h.. . (perhaps with subscripts): function symbols; context is used to determine 

the adicity. 
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Precedence 

1, A, E highest 
&, + medium 
-+, - lowest 
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Associativity 

& and + are allowed to take arbitrarily many conjuncts/disjuncts. For the most part, 
the notation is in common use and should provide no difficulties. 

Propositional Logic 

What follows here are some propositional logic theorems and arguments. They are 
given both in ‘natural’ form and in negated-conclusion clause form. Some are of 
historical interest (mostly having to do with the logical theorist), while others illus- 
trate various ‘tricks’. 

‘Naturaf’ form Negated-conclusion clause form 

1. (2pts) A biconditional version of the ‘most difficult’ theorem proved by the 
original Logic Theorist (Newell et al. 1957) 

tP-+d-t14+lP) 1P + 4 
-Jq+p 
14 
P 

2. .(2pts) A biconditional version of the ‘most difficult’ theorem proved by the new 
logic theorist (Newell and Simon 1972) 

llP*P P 
1P 

3. (lpt) The ‘hardest’ theorem proved by a breadth-first logic theorist (Siklossy 
et al. 1973) 

l(P -+ 4) + (4 -+ PI P 
14 
4 
1P 

4. (2pts) Judged by Siklossy et al. (1973) to be ‘hardest’ of first 52 theorems of 
Whitehead and Russell (19 10) 

(1P + 9) 4-i (14 -+ P> P+4 
14 + TP 
19 
1P 
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5. (4pts) Judged by Siklossy et al. to be ‘hardest’ of first 67 theorems of Whitehead 
and Russell (1910) 

((P + 4) + (P + 4) -+ 
(P + (4 - r)) 

lq+p+r 

1P 
9 
7r 

6. (2pts) The Law of Excluded Middle: can be quite difficult for ‘natural’ systems 

(P + 1P) 1P 
P 

7. (3pts) Expanded Law of Excluded Middle. The strategies of the original Logic 
Theorist cannot prove this 

(P + 1llP) 1P 
P 

8. (5pts) Pierce’s Law. Unprovable by Logic Theorist, and tricky for ‘natural’ 
systems. 

NP + cd --) PI + P P 
1P 

9. (6pts) A problem not solvable by unit resolution nor by ‘pure’ input resolution. 

I(P + 67) & mP + 4) & P+4 
(P + 1411 -+ TOP + 14) 

1P + 4 
p+14 
1P + 14 

10. (4pts) A reasonably simple problem with premises, designed to see whether 
‘natural’ systems correctly manipulate premises. 

q-+r 
r + (P & 4) 

iq + r 
ir+p 
lr + q 

P -+ (4 + 4 lp+q+r 
p-4 P+4 

11. (Ipt) A simple problem designed to see whether ‘natural’ systems can do it 
efficiently (or whether they incorrectly try to prove the + each way) 

(P d-b P) P 
1P 
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12. (7pts) The ‘hardest’ propositional problem found in Kalish and Montague 
(1?64), according to Pelletier (1982) 

Kp - 9) * 4 - [I-J ++ (4 - dl P+q+r 
iq+ip+r 
ir+ip+q 
ir+iq+p 
p+iq+r 
p+ir+q 
q+r+ip 
ir + iq + ip 

Distribution Laws can be very tricky for ‘natural’ systems. (They are assumed by 
resolution systems in the conversion to clause form). The next few problems list some 

13. (5pts) 

b + (4 & dl t* [(p + 4) 8~ P+9 
(P + r>l 

p+r 
1P 
iq + ir 

14. (6pts) 

(P +-+ 4) * ((cl + 1P) & 1P + 4 
(14 + PII 

14+P 
lq+lP 
P+4 

15. (5pts) 

(P + 4) ++ (14 + 4) 1P + 4 
P 
14 

16. (4pts) A surprising theorem of propositional logic 

(P + 4) + (4 --, P) P 
14 
4 
1P 

17. (6pts) A problem which appears not to be provable by Bledsoe et al. (1972). 
(For details of why not, see Pelletier (1982), p. 135f). 

((P & (4 -+ 4) + 4 c* 1p+q+s 
OP + 4 + 4 & 
(lp + ir + s)) 
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1p+1r+s 

P 
iq + r 
1S 

Monadic Predicate Logic 
Problems in the monadic predicate logic are not much more difficult than those in the 
propositional logic. All that’s required is a method of handling quantifiers correctly 
(by finding appropriate instances or substitutions). The problems in this section are 
designed to test whether this happens. 

18. 

19. 

20. 

21. 

(lpt) 

(EY)(W(FY + Fx) 

(3pts) 

(W (AY) (AZ) W’Y - 
(Px + ex>> 

(4pts) 

Fx 

1 E’fC4 

Q4 + 1 W(x) + Q&d 

Px 

1Qx 

[(Ax) (Ar) (Ed (A4 ((Px & Qv> + 1Py + -IQZ + RfCy, z) 
(Rz & SW)) + 1Py + 1Qz + Sx 

(GWW (Px & Qv> --) 
W Rz)l 

; 
TRW 

(5pts) A moderately tricky problem, especially for ‘natural’ systems with 
‘strong’ restrictions on variables generated from existential quantifiers. 

@N(P -, Fx) 
UW(Fx + P) 
(E-4 ( P - Fx) 

lp + Fa 
lFb+p 
p + Fx 
lFx+lp 

Some problems having to do with ‘confinement’ of quantifiers. These are often trivial 
in reslution systems because they are assumed in conversion to clause form. 

22. (3pts) 

(W(P - Fx) --) (P - (Ax) Fx) p+lFx 
Fx + 1~ 
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FY + P 
lp + 1Fa 
Fy + 1Fa 

23. (4pts) 

(A-4( P + Fx) ++ (P + W) Fx) p + Fx + Fy 
p + Fx + Fb 
1P 
1Fa + p + Fy 
TFa + iFb 
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The following are 
Montague (1964). 

24. (6pts) 

1 (Ex)(Sx & 

some more tedious monadic logic problems from Kalish and 

Q4 
(AxW’x -+ <Qx + R-4) 
l(Ex)Px + (Ex)Qx 
(Ax) (Qx + Rx --) Sx) 
(Ex)(Px & Rx) 

25. (7pts) 

(Ex) P.u Pa 
(Ax) (Fx + (1 Gx & Rx)) 
(Ax)(Px + (Gx & Fx)) 

-IFX + -IGX + -IRX 
--iPx + Fx 
1Px + Gx 
1 Px + Qx + Pb [(Ax)(Px + Qx) + 

(Ex)(Px & Rx)] 

(W(Qx & Px) 

26. (7pts) 

(Ex)Px ++ (Ex) Qx 
GW(AY)V’X & QY -+ (fi - SY)) 
[(Ax)(Px -+ Rx) +-. 

(Ax)<Qx + WI 

1Sx + 1Qx 
1 Px + Qx + Rx 
Pa + Qb 
1Qx + Sx 
-IRX + Sx 
-IPX + TRX 

1 Px + Qx + Rb 
1Qx + TPX 

TPX + Qa 
1Qx + Pb 
-IPX + lQy + 1Rx + Sy 

1Px + 1Qy + 1Sy + Rx 
-IPX + Rx + 1Qx + Sx 
1 Px + Rx + PC 
1Q + Rx + -IRC 
Qd+ 1Qx + Sx 
Qd + PC 
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27. (6pts) 

(Ex)(Fx & -I Gx) 
(Ax)(Fx -, Hx) 
(Ax) (Jx & Ix -+ Fx) 
[(Ex)(Hx & 1 Gx) + 

(Ax)(Zx + 1 Hx)l 
(Ax) (Jx + -I Ix) 

Qd i- -tRc 
TSd + -IQX + Sx 
TSd + PC 
TSd -I- -IRC 

Fa 
1Ga 
-IFX + Hx 
-IJX + -IZX + Fx 

1Hx + Gx + -1Zy1Hy 
Jb 
Zb 

28. (8pts) 

KAx)Px -+ (Ax) Qxl 
KW<Qx + Rx) -+ 

(W(Qx & WI 
[(Ex)Sx + (Ax)(Fx + Gx)] 
(Ax) (Px 8z Fx + Gx) 

1Pa + Qx 
1Qb + Qc 

1Qb + SC 
TRb + Qc 
TRb -I- SC 
-ISX + 1Fy + Gy 
Pd 
Fd 
TGd 

29. (7pts) 

(Ex)Fx & (Ex)Gx 
[(Ax)(Fx + Hx) & 

Fa 
Gb 

(Ax)(Gx + Jx)] - 1Fx + Hx + 1Fy + 

KW(AY) (Fx & GY -, Hx & JY)I 1Gz + Hy 
-IFX + Hx + 1Fy + 1Gz + Jz 
-I Fx + Hx + Fe + Gf 
-IFX + Hx + Fe + 1Jf 
1Fx + Hx + 1He + Gf 
-IFX + Hx + 1He + 1Jf 
-IGX + Jx + 1Fy + lGz+ Hy 
1Gx + Jx + 1Fy + 1Gz + Jz 
-I Gx + Jx + Fe + Gj 
-IGX + Jx + Fe + 1Jf 
-IGX + Jx + iHe + Gf 
1Gx + Jx + 1He + iJf 
Fc + 1Fx + -IGY + Hx 
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30. (6pts) 

(Ax) (Fx + Gx + 1 Hx) 
(Ax)((Gx + 1Zx) + Fx & Hx) 
(Ax)Zx 

31. (5pts) 

1 (Ex)(Fx & (Gx + Hx)) 
(Ex)(Zx & Fx) 
(Ax)(l Hx + Jx) 
(Ex)(Zx & Jx) 

32. (6pts) 

(Ax)(Fx & (Gx + Hx) -+ Ix) 
(Ax)(Zx & Hx + Jx) 
(Ax)(Kx + Hx) 
(Ax)(Fx & Kx -+ Jx) 

Fc + TFX + -ICY -I- Jy 
Fc + Fe + Gf 
Fe + Fe + 1 Jf 
Fc + 1 He + Gf 
Fe + THe + 1Jf 
Gd + 1Fx + 1Gy + Hx 
Gd + 1Fx + 1Gy + Jy 
Gd + Fe + Gf 
Gd + Fe + TJf 
Gd+ 1He + Gf 
Gd + 1He + TJf 
-IHC + TJd + 1Fx + 

1Gy + Hx 
-IHC + 1Jd + 1Fx + 

1Gy + Jy 
-IHC + TJd + Fe + Gf 
1Hc + 1Jd + Fe + -IJ~ 
1Hc + Jd + 1He + Gf 
1Hc + -tJd + -tHe + iJf 

--IFx + 1Hx 
Gx + Fx 
1Gx + 1Hx 
Gx -I- Hx 
Ix + Fx 
Ix + Hx 
7 la 

TFX + -IGX 
TFX + 1Hx 
la 
Fa 
Hx + Jx 
1Zx + 1Jx 

1Fx + -IGX + Ix 
1Fx + -tHx + Ix 
1Zx + 1Hx + Jx 
TKX + Hx 
Fa 
Ka 
iJa 
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33. (4pts) This is a monadic predicate logic formulation of problem (17) above. 

(Ax)(Pa & (Px + Pb) + PC) * 7 Pa + Px + PC + Py 
(Ax)((l Pa + (Px + PC)) 8~ -lPC 

(1 Pa + (-I Pb + PC))) 
1Pa + Px + PC + 1Pd + Pb 
TPa + TPb + PC 
Pa 
TPe + Pb + TPa + Px + PC 
TPe + Pb $ -rPd 

34. (IOpts) Andrew’s Challenge (cf. de Champeaux (1979)). The problem is logically 
simple, but its size makes it difficult. (The conversion to clause form is left as an 
exercise for the reader, about 1600 clauses.) 

KW(AYW’X +-+ PY> - 
((WQx ++ WY) f’y)l c* 
KW(Av)(Qx * QY) ++ 
@Wx ++ (AY)PY)I 

Full Predicate Logic (without Identity and Functions) 
Once again we start with some problems to determine whether the quantifiers are 
being handled properly. 

35. (2pts) 

W (EY) WY --) (Ax) WY) PXY) 

36. (3pts) 

(Ax) (EY) FXY 
(A-4 (EY) GXY 
(Ax)(A~)@‘xy + GXY -, 

(Az)(Fyz + Gyz + Hxz)) 
(A-4 (EY) HXY 

37. (3pts) 

(AZ) (Ew) (Ax) (EY) Wz -+ PYW) & 
Pyz & (Pyw + (Eu)Quw)] 

(Ax) (AZ) [1 Pxz + (EY) QYZI 
(E-9 (EY) QXY --) (Ax) Rxx 
(Ax) @Y) RXY 

PXY 
1 Pf(x, YMX? Y) 

@f(x) 
G&d 
1 Fxy + -I Fyz + Hxz 

1 Fxy + 1 Gyz + Hxz 
1Gxy + 1 Fyz + Hxz 
-tGxy + 1Gyz + Hxz 
1 Hax 

1PYX + Pf(x, YkW 
Pfk Y), x 
lPf(x, Y>> g(x) + Q&G Y), &> 
f'x, Y + Qh Y>, x 
lQx,y + &z 
7Ra.x 
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38. (4pts) Here is a full predicate logic version of problems (17) and (33). Conver- 
sion to clause form left as an exercise. 

{(Ax)[Pa & (Px + (Ey)(Py & Rxy)) + (Ez)(Ew)(Pz 8~ Rxw & Rwz)] H 
(Ax)[(-I Pa + Px + (Ez) (Ew) Pz & Rxw & Rwz)) & 
(1 Pa + I (Ey)(Py & Rxy) + (Ez)(Ew)(Pz & Rxw & Rwz))]] 

Some problems in set theory can be represented in first order logic using the predicate 
‘F’ to stand for ‘is and element of’. Here are some reasonably simple ones. 

39. 

40. 

41. 

42. 

43. 

(3pts) Russell’s paradox: there is no ‘Russell set’ (a set which contains exactly 
those sets which are not members of themselves) 

-I 0-3 WY) (FYX t* 1 FYY> I Fxa + I Fxx 
Fix + Fxa 

(5pts) If there were an ‘anti-Russell set’ (a set which contains exactly those sets 
which are members of themselves), then not every set has a complement. 

(Ey)(Ax)(Fxy c-t Fxx) -+ I Fxa + Fxx 
1 (Ax)(Ey)(Az)(Fxy ++ 1 Fzx) 1 Fxx + Fxa 

1 F.-u, f(x) + I Fyx 
Fyx + Fx, f(x) 

(6pts) The ‘restricted comprehension axiom’ says: given a set z, there is a set all 
of whose members are drawn from z and which satisfy some property. If there 
were a universal set then the Russell set could be formed, using this axiom. So 
given the appropriate instance of this axiom, there is no universal set. 

(AZ) (EY) (A-4 WY c* 1 Fk f( Y) + FXY 
(Fxz & I Fxx)) 

I (Ez)(Ax) Fxz ~Fx,f(y) + IFXX 
1 Fxy + Fxx + Fx, f(y) 
Fxa 

(6pts) A set is ‘circular’ if it is a member of another set which in turn is a member 
of the original. Intuitively all sets are non-circular. Prove there is no set of 
noncircular sets. 

1 (EY) (Ax) WY t* 
1 (Ez) ( FXZ & Fzx)) 

1 Fxa + Fxy + -I Fyx 

Fxf(x) + Fxa 
Ff(x)x + Fxa 

(5pts) de Champeaux (1979). Define set equality (‘Q’) as having exactly the same 
members. Prove set equality is symmetric. 

VWAY)(QXY - (W(Fzx * Fzy)) ~Qxy + IFZX + Fzy 
W)@Y)(QXY ++ QYX) I Qxy + 1Fzy + Fzx 

t-l-(x, Y), x + t’f(x, Y), Y + QXY 
1 ET@, Y), Y + -I F/-(x, Y), x 

+ QXY 
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Qab + Qba 
1Qba + 1Qab 

Here are some problems taken from Kalish & Montague (1964) 

44. (3pts) 

(AW-x + (EY)(GY & HXY) & 1 Fx + Gf(x) 
@Y) (GY & 1 fWI 

(WJx 8~ (AYWY + fW1 
(Ex)(Jx & -I Fx) 

1 Fx + Hx, j-(x) 
1 Fx + Gg(x) 
1 Fx + 1 Hx, g(x) 
Ja 
1Gx + Hax 
-IJX + Fx 

45. (5pts) 

(Ax)(Fx & (Ay)[Gy & Hxy + -I Fx + Gf(x) + -I Gy + 
1Hxy + Ky 

JXYI + (Ay)(Gy & HXY --* KY)) 1 Fx + Hx,f(x) + 1Gy + 
1Hxy + Ky 

-I (EYWY & KY) 1Fx + lJx,f(x) + 1Gy + 
1 Hxy + Ky 

(W W & (AYWXY -, LY) & 
(AY)(GY & HXY --) JxY)~ 

(W W & 1 (EY)(GY & Hxy)) 

1Lx+-lKx 

Fa 
1 Hax + Lx 
-IGX + 1Hax + Jax 
1 Fx + Gg(x) 
-I Fx + Hx, g(x) 

46. (6pts) 

(Ax) (Fx dc (Ay) [Fy & Hyx -+ 

GYI -+ Gx) 
{(Ex)(Fx & 1 Gx) -, 

(Ex)(Fx & 1 Gx & (Ay)(Fy & 
-I GY --, Jxy)) 

(Ax)(Ay)(Fx & Fy & Hxy + 
1 Jyx) 

(Ax)(Fx + Gx) 

1 Fx + Ff(x) + Gx 

1 Fx + Hf(x) + Gx 
-I Fx + lGf(x) + Gx 

1 Fx + Gx + Fa 

1Fx + Gx + iGa 
-I Fx + Gx + 1 Fy + Gy + Jay 
-IFX + 1Fy + -~Hxy + 1Jyx 
Fb 
1Gb 



SEVENTY-FIVE PROBLEMS FOR TESTING ATP 203 

A problem which has gotten some considerable play in the literature is ‘Schubert’s 
Steamroller’, after Len Schubert. (See Pelletier (1982), Walther (1985), McCune 
(1985), Stickel (1986)). The problem presented in English is this: 

47. (10pts) Wolves, foxes, birds, caterpillars, and snails are animals, and there are 
some of each of them. Also there are some grains, and grains are plants. Every 
animal either likes to eat all plants or all animals much smaller than itself that 
like to eat some plants. Caterpillars and snails are much smaller than birds, 
which are much smaller than foxes, which in turn are much smaller than wolves. 
Wolves do not like to eat foxes or grains, while birds like to eat caterpillars but 
not snails. Caterpillars and snails like to eat some plants. Therefore there is an 
animal that likes to eat a grain-eating animal. 

The previously mentioned authors symbolize the problem (especially the 
conclusion) differently (see Stickel(l986) for details). In its original form it is as 
follows: Let 

PO: a is an animal 
P,: a is a wolf 
Pz: a is a fox 
P3: a is a bird 
P4: a is a caterpillar 
(Ax)(P,x -+ Pox) & (Ex)P,x 
(Ax)(P,x + Pox) & (Ex) P2x 
(Ax)(P,x + Pox) & (Ex) P3x 
(Ax)(P,x + Pox) & (Ex)P,x 
(Ax)(P,x -+ Pox) & (Ex) P,x 

(JWQ,x & (Ax)<Q,x + Qo4 
(AW’ox -+ KAY)(Q,Y + RXY) + 

(AYW’OY & SYX & fWtQi,z & 
RYZ)) 4 fiy)l) 

(Ax)(AYN(P,Y 8~ U’,x + PA) -. 
SXY) 

WHAYNP,X & PZY) + SXY) 
(W(AYW’,X & P,Y) -+ sxy) 
(W(AYW,X 8~ (PZY + Q,Y>> -, 

1 RXYI 
(Ax) CAY) ((P+ & P,Y) -+ RXY) 
(Ax) CAY) W’j x & P,Y) + 1 RXY) 
(A4 W’G + PA + (EY)(QoY & 

fiYN 
(W(EYW~X & Pov & 

W(Q, z & RYZ & RxY)) 

P,: a is a snail 
QO: a is a plant 
Q,: a is a grain 
S: a is much smaller than b 
R: a likes to eat b 
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In negated conclusion clause form, the problem becomes: 

P,a 

P,b 
p3c 
f’,d 
P5e 
QLf- 
lP,X + Pox 
1 P,x + Pox 
1 P,x + Pox 
-lP,x + Pox 
1 P,x + P,x 
lQ,x + Qox 
-tP, + 7P,y + ~Rxy 

lP,X + -IQ* + lP,Z + 
1Szx +lQw +lRzw + 
Rxy + Rxz 

7P,x + 1P,y + sxy 
1 P,x + 1 P,y + sxy 
7P,x + 1P,y + sxy 
lP,X + 1P,y + sxy 
-tP,x + -tPdy + Rxy 

1 P4 + Qo i(x) 
1 P4x + Rx, i(x) 

1 P, + Q&4 
1 P,x + Rx, j(x) 
lP,x + lP,y + 1Rxy 
lP,x + lQ,y + 1Rxy 
lP,X + 1Poy + lP,Z + 

1 Ryz -I- Rxy 

Full Predicate Logic with Identity (without Functions) 

48. (3pts) ‘A problem to test identity ATPs’ - Piotr Rudnicki (Computing, Univ. 
Alberta). 

a=b+c=d 
a=c+b=d 
a=d+b=c 

a=b+c=d 
a=c+b=d 
a#d 
b#c 

Here are some problems which straightforwardly test the identity components of 
ATPs without putting much strain on the rest of the system. 

49. 

50. 

51. 

(5pts) 
(Ex)(Ey)(Az)(z = x + z = y) 
Pa & Pb 
afb 
(Ax) Px 

x=c+x=d 
Pa 
Pb 
a#b 
-7Pe 

(4pts) 
(Ax)[Fax + (Ay) Fxy] + 

(JW (AYV’XY 

Fax + Fxy 

1 W-W 
(5pts) 

(W (Ew) (Ax) CAY) BY ++ 
(x = z & y = w)] 

1Fxy + x = n 
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(W (A4 NW(AY) WY c-) 
y=w)-x=z] 
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-~Fxy + y = b 

x#a+y#b+Fxy 
1 EO-4, Y + Y = g(x) + f(x) = x 
-I W(x), Y + Y = g(x) + 

Ff(x), h(x, z) + h(x, z) = z 
1 v-(43 Y + Y = g(x) + 

h(x, z) Z z + 1 Ff(x), h, (x, z) 
Y f ‘d4 + W(x), Y + 

Ff(x), h(x, z) + h(x, z) = z 
Y Z g(x) + W(x), Y + f(x) = x 
Y z g(x) + Ff(x), y + h 6, z> z 

z + 1 U-W, W, 4 
f(x) z x + m4 h(x, z) + 

h(x, z) = z 
f(x) # x + h(x, z) # z + 

1 U-(4, h (x, 4 

52. (5pts) 

(W (Ew) (A-4 WY) WY ++ 

(x = z & y = w)] 

t EN WY) WW4 (FXY (-, 

~Fxy + x = y 

-~Fxy + y = b 
x=z)++y=w] 

x#y+y#b+Fxy 
1 Fy,fW + Y f g(x) + 

S(x) = x 
-I Fy,f(x) + Y = g(x) + 

Wx, z>fW + 1 Fh(x, 4, f(x) 
Y f d-4 + Fy,fW + f(x) = x 
Y f g(x) + Fy,fW + 

Fh(x, z), f(x) + h(x,‘.z) = z 
Y f g(x) + F~,f(x) + h(x, 4 Z 

z + 1 Fh(x, z), f(x) 
f(x) # x + Fh(x, 4, f(x) + 

h(x,z)=z 
f(x) # x + h(x, z) # z -t 

1 f’h 6, zlS(4 

53. (7pts) [Test your converter-to-clause-form: about 146 clauses.] 

(Ex)(Ey)[x # y & (Az)(z = x + 
z = Y)l 
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{ W (A-4 KJ+) WY) (FXY w 
y=w)crx=z]tt 
(W WY) KW (A4 (FXY w 
x = 2) 4-b y = w]} 

54. (9pts) Montague’s (1955) paradox of grounded classes. 

(Ay)(Ez)(Ax)(Fxz - x = y) lf%f(.Y) + x = Y 
1 (Ew) (Ax) [Fxw - (Au) (Fxu + x z Y + &f(Y) 

1 Fxa + 1 Fxy + Fg(x, y), y 
1 Fxa + -I Fxy + 1 Fz, g(x, y) 
Fx, h(x) + Fxa 
-I Fx, h(y) + Fi( y, x), x + Fya 

55. (8pts) The following problem was given by Len Schubert. For ATPs with an 
‘answer extraction’ mechanism, the conclusion might replaced with the query 
‘who killed Aunt Agatha?’ 

English: Someone who lives in Dreadsbury Mansion killed Aunt Agatha. 
Agatha, the butler, and Charles live in Dreadsbury Mansion, and are the only 
people who live therein. A killer always hates his victim, and is never richer than 
his victim. Charles hates no one that Aunt Agatha hates. Agatha hates everyone 
except the butler. The butler hates everyone not richer than Aunt Agatha. The 
butler hates everyone Agatha hates. No one hates everyone. Agatha is not the 
butler. Therefore: Agatha killed herself. 

(Ex)(Lx & Kxa) 
La & Lb & Lc 
(Ax)(Lx + x = a + x = b + 

x = c) 
(AYNWK~~ --f Hxy) 
(Ax) WY) WY + -I RXY) 
(Ax)(Hax + -I Hex) 
(Ax)(x # b --f Hux) 
(Ax)(l Rxa + Hbx) 
(Ax)(Hax + Hbz) 

(A4 (EY) 1 HXY 
a#b 
Kaa 

Ld 
Kda 
La 

Lb 
LC 

lLx+x=a+x=b+x=c 
1 Kxy + Hxy 
1Kxy + ~Rxy 
-IHUX + 1Hcx 
x = b + Hax 
Rxa + Hbx 
1 Hax + Hbx 
1 Hx, f(x) 
a#b 
1 Kaa 

The Full Predicate Logic with Identity and Arbitrary Functions 

56. (4pts) 
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tAx)V+ + VW1 

57. (2pts) 

(Ax)(Ay) (Az)[Fxy & Fyz + Fxz] 

t’f@, b),fta, 4 

58. (3pts) 

tWtA~lfC4 = d A 

(A4 (A~lftftx)) = fkt YN 

59. (3pts) 

60. (4pts) 

(A4 W> f(x) c-, (EY) [(AZ) WY -+ 

k f(x)) & FXYI 
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1Fx + y #f(y) + Fy + 
1 Fz + Ff(z) 

1Fx + y #f(y) + Fy + Fu 
1Fx + Y Z f(r) + 

Fy + b = f(b) 
1F.x + Y #f(~) +f(~) + 11% 
Fc + 1 Fx -t- Ff(x) 
Fc + Fa 
Fc + b = f(b) 
Fc + TFb 
1 Ff(c) + 1 Fx + Ff(x) 
1 If(c) + Fu 
1 Ff(c) + b = f(b) 
1 Ff(c) + 1 Fb 

Ffta, b), f@, 4 
Wtb, 4, Aa, 4 
1Fxy + 1 Fyz + Fxz 
lFf(a, b),f(a, 4 

f(x) = g(y) 
f(ft4) # fk(b)) 

I Fx + 1 Ff (x) 

EK4 + F(x) 
1 F(x) + t?-(x) 

f&f(a) + lf’by + Fy,fW 

Fa, f (a) + Fa, b 
Fg(x), x + 1 Fax + 1 Fyb + 

FY, f (4 
Fg(x), x + 1 Fax + Fab 
F&x), x + 1 Fax + 1 Fu, f(a) 
1 Fg(x), f(a) + 1 Fax + 

1 Fb + FY, J-64 
1 Fg(x), f(a) + 1 Fax + Fab 
1 Fg(x), f(a) + 1 Fax + 

1 Fa, ft4 



208 FRANCIS JEFFRY PELLETIER 

Having warmed up with some straightforward examples, let’s turn our attention to 
some more difficult ones. 

61. (6pts) 

(Ax) WY) (Azlf(x~ f( Y, 4) = f&T f( Y, z)> = f(f(x, Y) 4 
f(f(x, YIP 4 

(Ax) CAY) (A4 (A4 f(a, f(h fk 0) Z 
fk f( YY fk w))) = f(f(f(G 8, 4 4 
f(fuh YL 4 w 

62. (Spts) Here is the original formulation in Bledsoe et al. (1972), p. 59 of the 
problem mentioned in (17), (33), and (38). 

[Fu & (Ax)(Fx -+ F’(x))] +-+ 1 Fu + Fb + Ff(f(x)) + Fy + 
Ff(f(y)) 

(W[[b f’a + F.x + Ff (f Cd 8~ 

b J’a + lFf(x) + Ff(fCMl 

1Fu + Fb + Ff(f(x>) + 
lFf(y) + Ff(f(~)) 

1 Fu + Fb + Ff(f(x)) + 1Fz + 
Ff (Y) 

-I Fa + Fb + Ff (f(x)) + 

1Ff (f (4) 
1Fa + lFf(b) + Ff(f(x)) + 

FY + Ff(f(y)) 
-IFQ + lFf(b) + Ff(f(x)) + 

lFf(y) + Ff(f(y)) 
1Fu + -off + Ff(f(x)) + 

1 Fz + Ff (4 
1Fa + lFf(b) + Ff(f(x)) + 

1Ff (f (4) 
Fa 
-IFC + Ff(c) + IFU + Fy + 

Ff(f(y)) 
TFC + Ff(c) + 1Fa + 

lFf(y) + Ff(.Ry)) 
1 Fc + Ff (c) + 1 Fz + Ff (z) 

1Fc + Ff(c) + lFf(f(4) 
1 Ff (f (c)) + 1 Fu + Fy + 

Ff(f(y)) 
lFf(f(c)) + 1Fa + lFf(y) + 

Ff(f(y)) 
lFf(f(c)) + 1Fz + Ff(z) 
1 Ff (f (c)) + -I W(f (4) 

Here are three group theory problems, published I think, by Larry Wos (but I cannot 
locate where). Consider 
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(4 ;;I ty) GWf(ftx, YL 4 = f(x, 

(b) (A&a, x) = x 
(4 (W(E~lft Y, -4 = a 
63. (6pts) Show that (a), (b), (c) entail 

(A-4 (AY) (A4 V-(x, Y) = ftz, Y) + 
x = z] 

64. (6pts) Show that (a), (b), (c) entail 
(A4 tA.14 VI Y, 4 = a + 

f-(x, Y) = 4 

65. (8pts) Show that (a) and (b) entail 

[(A-X)/(X, x) = a --* 
(Ax) tWf(x, Y) = f( Y, 41 

f(f(x, Y)? 4 = fk f-t Y, 4) 

f@, 4 = x 
f(gtx), 4 = a 

f@, cl = .m 4 

b#d 

ftc, 4 = a 

ftb, c) # a 

f(X, x) = a 

S(h 4 z ftc, b) 

Charles Morgan (see AAR Newsletfer #3) has suggested a method of constructing 
difficult function-problems out of easy propositional logic ones. To do this, take a 
propositional logic theorem, eg (11 P -+ P), treat the propositional letters as objects 
which can be quantified over, encode the sentence operators (1 and -+, here) as 
functions, and treat ‘is a theorem’ as a (monadic) predicate ‘T’. Thus, this theorem 
would become (Ax) E(n(n(x)), x). Do this for every axiom of the logic under con- 
sideration, and treat the results as premises for every argument. The rules of inference 
of the logic are treated in this manner by saying that if the premise of the rule has ‘7” 
applied to it then the conclusion of the argument has ‘7” applied to it. So for the rule 
modus ponens: if P and (P -+ Q) are derivable, then so is Q, we would convert this 
to (Ax)(Ay)(Ti(x, y) & TX -+ Ty), and treat it as a premise of every argument. That 
this can generate quite difficult problems out of very simple ones is demonstrated by 
the following examples of Morgan’s. The initial propositional logic has three axioms 
plus modus ponens: 

(4 tAxK%9 TW, 4 Y, -4)) 
(b) (Ax) (+)(Az) T(iG(x, i( Y, z)), Wx, Y), 0, z)))) 
(4 (Ax) MY) Tt WW 4 Y)), it Y, 4)) 
(4 (Ax)ObWW, Y)) & T(x) -+ Tt Y)) 

66. (7pts) From (a)-(d) prove 

(Ax) Wtx, n(W)) 
67. (7pts) From (a)-(d) prove 

(Ax) WtntW)~ 4 
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68. (8pts) Replace (c) with (Ax)(Ay)T(i(i( y, x), i(n(x), n(y)))) and prove 
(Ax) Wtx, ~Mx)>N 

Morgan’s method is completely generalizable. The examples above used as an ‘object 
language’ only + and 1, but we could have added on other connectives together with 
appropriate definitions or axioms. For example, we might add on t, together with one 
or more of the definitions oft, in terms of + and 1 and perhaps with new axioms 
for c, and perhaps with new rules of inference for CI. For instance, we might add on 

WWWt Wtx, Y)) & TM Y, 4) t* T@(x, Y))) 
and/or (A-4 (AY) Wtetx, Y), Nitx, Y), n(i( Y, 4))))) 
and/or GWtAMx, Y) = Wi(x, Y), NY, 4))) 
and/or (Ax)(AY)UM~~ YN & T(x) + T( YN 
and/or WW!Mx, Y) = 444, nt Y)) 
and/or tAx)tA~Mx, Y) = ety, 4 
and/or (Ax) GWMx, Y)) = 4x, 4 Y)> 

and the like. With sufficient of these, you can try to prove (the translations of) 
arguments using +, 1, t+. They are very difficult. But the method can be generalized 
even further and extended to other logics which include propositional logic as a part. 
Let us suppose we have a characterization of the propositional logic using Morgan’s 
method. That is, suppose we have translated a complete set of propositional axioms 
and rules of inference, such as the ones mentioned before Problem 66, into the 
function-notation just mentioned. Now suppose we wish to consider modal prop- 
ositional logics. These logics introduce one new propositional operator, L (logical 
necessity). The modal system T can be described as 

(a) propositional logic axioms 
(b) Modus Ponens 
(4 UP + 4) + (LP + Ld 
(4 LP + P 
(e) if p is a theorem, then Lp is a theorem. 

Morgan’s method as described shows how to get the translation of (a) and (b). Thus 
the function-notation version of system T would be arrived at by introducing a new 
function symbols for L, say ‘b,‘, and an axiomatization of system T would be 

(a) (the translations of the propositional logic axioms) 
(b) (the translation of Modus Ponens) 
tc) (Ax) WY) TW, (4x, Y)>, it& (4, h t YNN 
(4 (Ax) TG(b (4 4) 
te) (Ax) t T(x) -, T(h (4)) 

69. (9pts) Using the (a)-(e) just given as premises, translate simple theorems of the 
modal system T and prove them. For example: 

(Ax) Wth t-4, 4 (WNN 



SEVENTY-FIVE PROBLEMS FOR TESTING ATP 211 

70. (open problem) The example in (69) used the modal system T, and ‘6, ’ was the 
function corresponding to the L of system T. Now let’s consider the modal 
system K, and let’s represent its L by ‘bz’. The axioms and rules of inference for 
K are translated as 

(a) (translations of the propositional logic axioms) 
(b) (translation of Modus ‘Ponens) 
(f-1 (A.4 (AA TO@, (i(x, .Y)), @, (4, bd A))> 
W (A-4 VW -+ T(b, (4)) 

In Pelletier (1985) I posed the question of whether there might not be a way to ‘define’ 
the b, function in terms of the other functions (including b,), and a way to ‘define’ the 
b, function in terms of the other functions (including b,), so that if X was a theorem 
which mentioned ‘b, ’ but not ‘b2’, then the result of replacing ‘b,’ (and its argument) 
by its ‘definition’ would result in a theorem. [And conversely for a theorem Y which 
mentioned ‘b2’ but not ‘b,‘.] These ‘definitions’ were also to have the following feature: 
letfi be the ‘definition’ of ‘b,’ in terms of ‘b,’ and f2 be the ‘definition’ of ‘bi in terms 
of ‘b,‘. Then 

(h) (A-4 Wx, h (fi (4))) 
0) (A-4 T(& h (fi (4))) 

were also to be true. That is, the result of ‘translating’ any sentence purely of one of 
the sublanguages into the other sublanguage can be ‘translated’ back into the first 
sublanguage and the result will be provably equivalent to the original sentence. 
Therefore, given (a)(i) the problem is to first determine whether there are suchf’s and 
second find out what they are. 

Some Problems for Studying the Computational Complexity of ATP’s 

The difficulty in constructing problems for studying the complexity of the proof 
system of an ATP is to describe a set of problems whose complexity can independently 
be characterized in terms of some metric which can be varied and which does not 
introduce any ‘side effects’ into the resulting proofs. Various attempts to state such 
a set of problems have usually focussed on (a) number of clauses, (b) number of 
symbols, (c) number of distinct symbols. It is extremely difficult to guarantee in 
advance that the increase in proof size which is observed when (say) the number of 
clauses is increased is due solely to the increase in number of clauses, as opposed to 
being also influenced by some hidden increase in ‘number of tricks required’ (say). The 
following problem-types are designed to give a measure of complexity which does not 
involve any other types of difficulty as the problems get more complex. 

71. (U-problems, after Alasdair Urquhart). 
Consider the following problems (the sub-problem of conversion to clause form 
is left to the reader). 
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The number of distinct sentence letters in U,, is n. the number of occurrences of 
sentence letters is 2n. The number of embedded W’S is (2n-1). The number of 
clauses goes up dramatically as U,, increases, but I don’t think it shows that the 
problems are dramatically more difficult as we go from U, to U,, say. Rather, 
it’s that the awkward clause form representation comes to the fore most dra- 
matically with embedded biconditionals. On all other measure of increase of 
complexity from U, to U,, one should say that the problems increase linearly in 
difficulty. So, given that the U-series of problems increases linearly in difficulty, 
compare the increase of your ATP along the dimensions of CPU time, size of 
proof, number of program statements executed, etc. [Alasdair Urquhart 
informs me that the proof size of any resolution system increases exponentially 
with increase in n]. 

72. (Pigeonhole problems - cf. Cook and Reckhow 1979). 
Suppose there are n holes and (n + 1) objects to put in the holes. Every object 
is in a hole and no hole contains more than one object. Pictorially, we can 
represent this (for the 4 object, 3 hole problem) as: 

A 

holes 
B C 

II 
I I I 
I I I 

I I I I 
I I I I 

21 I I I 
objects 1 I- I I 

I I I I 
31 I I I 

I I I I 
I I I I 

LI I I I 
-1 I I 

Each cell (i,i) says that the ith object is in thejth hole. For each cell use a 
different sentence letter (P, , P,, . . . ). for the 4-object, 3 hole problem we might 
assign the letters in this fashion: 
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holes 
A B c 

I I I I 
1 I Pl I PZ I 4 I 

I I I I 
I I I I 

21 PL I ps I '6 I 
objects I I I -I 

I I I I 
31 p7 I pa I ps I 

I I I I 
I I I I 

1 I P 
10 I P,, I P 12 I 

Ps for example says that object 3 is in hole B. Let us now state the problem: 
‘Each object is in a hole’ becomes (for this example) 

G-4 4 + PI + p, 
(b) P4 + Ps + f’6 
(c) p, + p, + p9 
(4 P,o + P,, + f’,, 

‘No hole has more than one object in it’ becomes 

(e) 7 P, + 7 P4 
(f) 1 P, + 1 P, 
(g) lP, + lPl0 
(h) lPc, + lP, 

for hole A 

(i) 7 P4 + i PI0 
(3 1 P7 + 1 PI0 

(k) -IP> + 1Ps 
(1) 1 P* + 1 Pg 
04 lP2 + 1Pll 
(n) 7 P, + 7 P, 

for hole B 

(0) lP5 + lpi, 
(PI lPt7 + lP,, I 

(4) 1 p3 + lP6 
(r) i P3 + 7 P9 ) 
(9 lP3 f lP,* 
(t) 1 Ps + 1 Py 

for hole C 

(4 lP6 + lP12 
(VI 1 p9 + 1 PI, J 

The set of clauses (a)-(v) are inconsistent, as will any set be which is generated 
this way when the number of holes is less than the number of objects. Picking 
the number of objects to be one greater than the number of holes will yield the 
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‘hardest’ problem (for that number of holes), so we will just consider the ‘n-hole 
problems’, assuming that the number of objects is (n + 1). It will be noticed that, 
for an n-holes problem, the number of distinct sentence letters is (n2 + n) and 
the number of clauses is 

n3 + n* 
- + (n + 1) 

2 

Thus the number of sentence letters increases quadradically and the number of 
clauses increases cubically. In any case, it seems that the ‘difficulty’ of the n-hole 
problems increases polynomially with n. See if your ATP can emulate that. 

73. (Predicate logic pigeon hole problems). Problem (72) represented the n-hole 
problems by distinct sentence letters. This problem can also be represented by 
selecting a predicate ‘0’ meaning that x is an object, and a predicate ‘H 
meaning that x is a hole. Let Zxy be a 2-place relation saying that (object) x is in 
hole y. The 3-hole problem then becomes 

“(a) (Ex)(Ey)(Ez)(Ew)[Ox & Oy & Oz & Ow & x # y & x # z & x # w & 
y # z&y # wc4z # WI 

(b) (Ex)(Ey)(Ez)[Hx&ZZy&ZZz&x # y&x # z&y # z& 
(Aw)(Hw --) w = x + w = y + w = z)] 

(4 (Ax)(Ox + @Y) WY & Zxy)) 

(d) (Ax(ZZy -, (Ay)(Az)(Oy & Oz & Zyx & Zzx + y = z)) 

These four formulas (a)-(d) are inconsistent, as are any generated in this 
manner. Test how your ATP increases in effort spent as the number of holes 
increases. 

74. (Arbitrary graph problems. Due to Tseitin (1968), see Galil (1977) for an 
expository version. See also Urquhart (unpublished a, b). My thanks to Urqu- 
hart for explaining them to me.) Consider a graph with the edges labelled. For 
example 

A B 

c e 0 E 

Assign 0 or 1 arbitrarily to nodes of the graph. For each node of the graph, we 
associate a set of clauses as follows: 
(1) every label of an edge emanating from that node will occur in each clause 

(of the set of clauses generated from that node) 
(2) if the node is assigned 0, then the number of negated literals in each of the 

generated clauses is to be odd. Generate all such clauses for that node. 
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(3) if the node is assigned 1, then the number of negated literals in each of the 
generated clauses is to be even. Generate all such clauses for that node. 

Tseitin’s result is this: the sum (mod 2) of the O’s and l’s assigned to the nodes 
of the graph equals 1 if and only if the set of all generated clauses is inconsistent. 
For example, if we assign the node at the top of the above graph a 1 and all 
others 0, then the set of all generated clauses will be inconsistent. The clauses 
generated are: 

(a) A + B 
(b) 7A + -TB 

from top node, which was assigned 1, so the 
number of negated literals is even in each clause. 

(c)A+C+1D - 

(d) A+lC+D 

i 

from left node, which was assigned 0, so the 

(e)iA+C+D 
number of negated literals is odd in each clause 

(f)lA+lC+lD 
(generate all possible such clauses) 

(8) B+C+lE ) 
(h) B+lC+E 
(i)iB+C++ 

(which was assigned 0) 

(j)iB+lC++E 
(k) D + 1 E 
(1) 1 D + E I generated from bottom node 

Clauses (a)-(l) are inconsistent: prove that with your ATP. Now, we can 
increase the complexity of the graph in a number of different ways. Pick a 
‘natural’ way and see how your ATP’s proof increases CPU or a number of 
resolvants generated, etc. 

75. According to Alasdair Urquhart, the U-problems of problem (71) can be 
graphically represented by the method of problem (74). The relevant graph is 

where the double-circled node is assigned 1 and all others are assigned 0. Have 
your ATP prove this. (Number of vertical lines is number of distinct sentence 
letters). 
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