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CHAPTER 1

PROGRAMMING ENVIRONMENT

The programming environment is an interactive session manager. When the ses-
sion manager starts up, an introductory message is displayed and the cursor is placed
on a new line, indented two spaces. The user can type a statement, and after press-
ing Return the input is evaluated, its result (if any) is displayed, and the cursor is
placed on the next line, indented two spaces and waiting for the next user entry. By
a statement we mean an expression in the K language or a command; the latter
resembles an operating system command and affects the working environment. A
K program is a function definition, which is just an expression of a special form.

To exit from the session, simply type \\ on the input line and press Return.

Script files that define toolkits and applications are simply text files containing
statements. When the command to load a script is executed the effect is to evaluate
every line in the script from top to bottom as if they were entered by hand in that
order. The script can be edited when changes are needed and then loaded again.
Any statement that can be entered by hand in a session can also appear in a script,
including statements to load other scripts.

Executing the Examples in the Manual

Examples in this manual are displayed as if the evaluations were carried out in an
interactive K session. That is, expressions whose results are to be displayed are
indented two spaces, and their results are displayed just below. For example:

  2 + 3 the user enters this
5 K displays this
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Annotations like “the user enters this” and “K displays this” are often added to
examples in the text as part of the discussion, and are not part of the simulated
interaction with K. They are always set off to the right and are typeset in the font
for text rather than the one for expressions, so it should always be easy to pick them
out. If you have access to a session and are evaluating the expressions in the manual,
do not include the annotations.

All displays of K statements and output in this manual are in a monospaced font, as
if they were typed on a computer keyboard. The monospaced font is also used
within the text for expressions, file names, etc. Sometimes an expression is dis-
played on a separate line simply for emphasis and is not meant to be executed. The
context should make these cases clear.

A log accumulates vertically; an expression is entered, its result is displayed below
it, the prompt for the next input appears below that result, and so on. In this manual,
however, significant space is sometimes saved by putting two or three input ex-
pressions on one line and their results immediately below, as in:

  2 + 3   4 - 1   6 * 5
5 3 30

This display cannot be reproduced in the interactive session. If you want to run the
examples yourself you must must enter them one at a time on different lines, or use
the list notation discussed in the following section.

Atoms and Lists

Individual numbers and characters are called atoms in K. There are also lists of
atoms, lists of lists of atoms, and so on. All lists are ultimately composed of atoms,
but can have many levels between the top and the atoms at the bottom. Lists can be
entered as a series of expressions separated by semicolons and surrounded by pa-
rentheses, as in (2 + 3; 4 - 1; 6 * 5). This list is said to have three items,
the first being  2 + 3,  the second  4 - 1, and the third  6 * 5.  It is displayed as
follows:

  (2 + 3; 4 - 1; 6 * 5) the user enters this
5 3 30 K displays the result
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This list is called an integer list because its items are all integer atoms. Note the
display of the result in the last example, with the items simply separated by spaces.
Constant numeric lists can be entered in this way as well, one atom after the other,
separated by spaces. For example:

  10 34 -5 67 a constant expression is entered
10 34 -5 67 the result (its value) is displayed

Constant character lists are entered and displayed with the characters between
double-quotes, as in:

  "abcdeghqwe"
"abcdeghqwe"

Constant integer and character lists always display like they are entered, although
extra spaces between the integers on entry do not appear in the displays.

Errors

If execution of an expression causes an error then an error message is printed and
the input cursor appears on the next line, indented two spaces, the same as if the
error had not occurred. For example:

  "a" + "c"
term: type

the cursor is now on this line

The term: part of the error message indicates that keyboard input is the source of
the error. The type part indicates a data type error, in this case that Plus does not
apply to characters.

This is the behavior when  \e 0  has been entered, setting the session Error Flag to
zero, which is convenient for new users and casual use. The alternate behavior, for
debugging, is for execution to suspend after the error message is printed so that the
state of the computation at the time of the error can be examined. Execute the
following command:

  \e 1
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Now when an error occurs not only is an error message printed, but the expression
is displayed with a caret under it to indicate the function in the expression where
the error occurred, and execution is suspended. The prompt now becomes > fol-
lowed by 2 spaces. If another error occurs before this one is cleared the prompt will
become >> followed by two spaces, and so on. To clear the last suspension enter \
following the prompt and Return. To clear all suspensions, repeat this as long as
there are > characters in the prompt. You cannot clear more than one suspension at
a time. For example:

  "a" + "c"
type error argument types for + must be numeric
"a" + "c"
    ^
>  "abc"[3] note the > in the prompt
index error the valid indices of  "abc"  are 0, 1, and 2
"abc"[3]
 ^
>>  \ the prompt >> indicates two suspensions; enter \
>  \ one suspension is cleared; enter \ again

the prompt is two spaces; the suspensions are cleared

The purpose of suspended execution is to determine the source of an error. Values
of variables can be examined and execution can be resumed with a specified value
for the function that caused the error. See the chapter Controls and Debugging in
the K Reference Manual for more information.

Incomplete Expressions

No matter if the Error Flag is 0 or 1, a prompt with at least one > appears after entry
of an incomplete expression. This is not the same situation as suspended execution
when the Error Flag is 1. In that case new expressions can be entered while sus-
pended, which is the common thing to do when you are trying to determine the
cause of the error. However, if after pressing Return the expression is incomplete,
everything you enter from now on becomes part of the expression until it is either
completed or aborted. For example, the expression (1 2 3; "abcd") can be
entered on two lines by breaking the entry at the semicolon, as follows:
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  (1 2 3 leave off the ; and press Return
>  "abcd") the prompt is >  ; you enter the second part
(1 2 3 the result is displayed
 "abcd")

the prompt is now the normal “space  over 2”

As long as the closing right parentheses has not been entered, every new line will
be an input line and no results will be printed. All input will become part of the
expression that started with (1 2 3. However, it is always possible to abort the
expression using \, the same command used in the previous section to clear an
error suspension.

The behavior is similar when there is a missing right bracket or right brace, or a
missing closing double-quote. Here is an example of the latter case:

  "abcd
>  " prompt is >  ; enter " to complete the constant
"abcd\n" the result is displayed

the prompt is now the normal “space over 2”

The two-character sequence \n at the end of the above constant denotes the new-
line character caused by pressing Return before the closing " was entered. If we
had continued to enter expressions instead of the closing " , the expressions would
simply have been appended to the character constant until finally a closing double-
quote or the abort command is entered.

There can be more than one source of incompleteness, and then there are more
than one > characters in the prompt. Repeating the first example:

  (1 2 3
>  "ab the prompt is > ; continue entry
>>  cd") now the prompt is >> ; continue entry
(1 2 3
 "ab\ncd") the result is displayed; note the \n

the prompt is now the normal “space over 2”

If on the third line the entry had been  cd"  without the ), then the next line would
have been an input line with one > in the prompt. Input mode would have contin-
ued until the expression that started with ( was complete.
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Sometimes an incomplete expression is unintentional, and completing it produces
an incorrect expression that results in an error message. That’s OK; no harm is
done, and the expression must be completed or aborted before you can continue.
Even entering  \\  to end the session will not work within an incomplete expres-
sion.

Statements are sometimes broken at semicolons for readability in this manual, but
the > characters in the prompt are not included unless there is a reason to do so.
However, you will see them when you enter the broken statements in a session.
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CHAPTER 2

A TOUR OF K

Introduction

This tour of K is just that: a general overview of the language and its application
development features. As we will see, the principal application components —
graphical user interface, file I/O, interprocess communication — are very straight-
forward and easy to use, and therefore most of this tour is about the core of the
language. The first part of the tour is designed to give you some familiarity with K.
After that, we will set up a simple, yet meaningful, application and add to it as the
tour proceeds.

First of all, the language has the traditional control constructs If, Do and While as
well as a conditional evaluation construct similar to the one in the C language. A
programmer could get by with these and very little else beyond the utility libraries,
and you may choose to do so at first. However, that would not be an effective use of
the language in the long run. The way to use K effectively is through its primitive
functions. The compound data structure in K is the list, and K provides a well-
designed set of interacting primitive functions for their manipulation. All the primi-
tive functions are associated with symbols, and all these symbols can be used in
expressions in the common way that arithmetic symbols are used, e.g. a + b * y.
A large part of the challenge of programming in K is constructing concise expres-
sions, and for successful programmers, it is also a large part of the pleasure.

Substantial use of symbols is not uncommon in programming languages. All the
non-alphabetic and non-numeric characters on the standard US keyboard have at
least one meaning in K, and all except @, $ and ̀  have at least one meaning in C. In
fact, the total number of meaningful symbols and symbol-pairs in C is greater than
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in K. However, K, like APL, associates more functionality with each symbol than
C, principally by assigning two primitive functions to most symbols in the tradition
of the symbol “-” in arithmetic, which is used for the two functions Minus (a - b)
and Negate (- x).

All the examples in the manual are displayed as they would appear in an interactive
session. Before starting the tour, read the chapter Programming Environment for
an introduction to using K. Even if you do not have access to K, that chapter will
explain the format of the examples in the tour. If you do have access to K, you
should execute the examples as you go through the tour, and by all means make up
some of your own. Whenever you want to exit from a K session, simply type \\
alone on a line and press Return.

Familiar Symbols with Familiar Meanings

All symbols on the standard US keyboard are significant in the K language and,
more often than not, have more than one meaning. Consequently there is a lot to
learn, but not an overwhelming amount unless you try to learn it all at once. The
tour begins with some familiar symbols that have well-known meanings.

As in arithmetic, + denotes addition and - denotes subtraction. For example:

  5 + 12
17
  5 + 12 - 4
13

Multiplication is denoted by *, which is common among programming languages:

  5 * 12
60

The relational functions are < for Less, > for More (or Greater), and = for Equal.
The result of a relational function indicates whether or not the relation is true for
the arguments, with 1 for True and 0 for False.

  5 < 12   5 > 12   5 = 12
1 0 0

Relational functions also apply to non-numeric data:
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  "s" < "h"   "s" > "h"   "s" = "h"
0 1 0

Each of the functions illustrated so far is dyadic, meaning that it has two argu-
ments. The symbol  -  can also be used monadically, i.e. with one argument, which
is placed to the right of the symbol, as in  - 3:

  - 3
-3
  27 + 5 * - 3        27 Plus 5 Times Negate 3
12

Why does the symbol - in the last expression denote Negate and not Minus? Be-
cause the symbol * is to its immediate left, not data that would serve as the second
argument.

Finally, the monadic form of the symbol ~ denotes Not, or logical negation. That is,
~1  is  0  and  ~0  is  1:

  ~ 1   ~ 0
0 1

The function Not in conjunction with the three relational functions above gives
three other common relational functions:

  ~ x < y x More or Equal y
  ~ x > y x Less or Equal y
  ~ x = y x Not Equal y

Data Types and Terminology

All the examples so far use individual integers and characters, which are atomic
data called —not surprisingly — atoms. There are other atomic data types, and
there are compound data structures called lists. Two other atomic types are float-
ing-point numbers and symbols. Floating-point numbers are specified in the usual
ways, in both decimal and exponential format. Symbols consist of one, two, or
more characters, much like integers are composed of one, two, or more decimal
digits. Symbol constants are denoted by back-quote followed by their character
contents. For example:

  `abc an atom whose contents are three characters



14

There are other data types as well, but these four are the basic ones; the others will
be introduced later.

You have already encountered lists in the discussion of data display formats in the
chapter Programming Environment. To recall, a constant list of atomic numeric
items can be entered simply by entering the items separated by at least one space,
as in:

  1  -2 0   45 9
1 -2 0 45 9

which is a list of five integers, and:

  "axw eql"
"axw eql"

which is a list of seven characters. Note that more than one space between the
numeric items in the first example are redundant, while the space between the
characters “w” and “e” in the second example is the blank character; it is part of
the data. Moreover, when only one character appears between double-quotes it is
an atom, not a one-item list (see Join and Enlist for a discussion of one-item lists).
In addition:

  1 3.4 5 2.97
1 3.4 5 2.97

is a list of four floating-point numbers and:

  `ibm   `sun`apple
`ibm `sun `apple

is a list of three symbols. Note that spaces between the symbol items are not neces-
sary, but one space is used in the display format for readability.

In the preceding list of floating-point numbers, it was not necessary to give the
whole number items 1 and 5 in a floating-point format, nor are they displayed in a
floating-point format. As long as one item in a numeric list of this form is given in
floating-point format, all items will be floating-point numbers. A special display
format is used when all the items in a list of floating-point numbers are whole
numbers:
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  1 -3e0 6 7 2
1 -3 6 7 2.0

As before, if one item in this input form is in decimal or exponential format then all
items become floating-point. And in this particular case, the last item is displayed
in decimal format to indicate that it is a list of floating-point numbers.

Items of lists are not necessarily of the same type, although they will be for con-
stant lists defined in the manner of the preceding examples. More generally, lists
can be defined by surrounding all items with parentheses and separating items with
semicolons, as in:

  (761; "a"; `sym; ; 123.82)
(761;"a";`sym;;123.82)

This is a list of five atomic items of different types: an integer followed by a char-
acter, followed by a symbol, followed by a special atom called nil, followed by a
floating-point number. The display is like the input, except that redundant blanks
are removed. The nil value is implied by the absence of any value between the third
and fourth semicolons.

More generally still, the list items can be other lists, and their items can also be
lists, etc. For example:

  (3 4 71 -4; "abcdemnklop"; (`abc; -5.6 7.03))
(3 4 71 -4
 "abcdemnklop"
 (`abc
  -5.6 7.03))

The first item of this list is the list of four integers  3 4 71 -4, the second item is
the list of eleven characters "abcdemnklop", and the third item is a list with two
items: the first the symbol atom `abc and the second the list of two floating-point
numbers -5.6 7.03. The display format now shows the items vertically. Ob-
serve that the indentation of each item indicates its level of nesting, or depth.

With regard to terminology, lists whose atoms are all of the same type are called
homogeneous lists, i.e. all atoms are characters, or all integers, or all floating-point
numbers, or all symbols. In particular, a homogeneous list whose atoms are charac-
ters is called a character list . If all the items in a character list are atoms then the
list is called a character vector. If the value of a variable x must be either a charac-
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ter atom or character list, we say simply that x is character. Similarly for integers,
floating-point numbers, and symbols. For example, "abc" is a character vector,
1 2 3 4  is an integer vector, 1.2 3e4  is a floating-point vector, and
`a `bb `ccc  is a symbol vector. A list whose items are all atoms, but not nec-
essarily of the same type, is called a simple list.

Character vectors are also called character strings, or simply strings. A character
list with the property that every atom is an item of a string is called a string list, and
one whose items are all strings is called a string vector. For example:

("xyz";"$2.03") this is a string vector
("ab";("xyz";"$2.03");"123.34") this is a string list
("ab";("z";"$2.03");"123.34") not a string list

The last example is not a string list because the atom z is not an item of a string, as
it was in the first example.

The general parentheses-semicolon form of entry can also be used for vectors. For
example:

  ("a";"b";"c") input
"abc" the display form indicates character vector
  (`a;`bb;`ccc) input
`a `bb `ccc the display form indicates symbol vector
  (1;2;3;4) input
1 2 3 4 the display form indicates integer vector
  (1.5;2.0;5e1) input
1.5 2 50 the display form indicates floating-point vector

Observe the second item in the last example, which was entered as 2.0 but dis-
played as 2. Eliding the decimal format in the display is permissible because the
presence of 1.5 as the first item and the format of the display is enough to indicate
floating-point vector (the entry 2.0 would have displayed as 2.0 in a context that
required decimal format). However, eliding the decimal format in the input would
have produced a different result.

Unlike the rule described earlier for entering floating-point lists as numbers sepa-
rated by spaces, if in the last example the second item had been entered as an
integer, the result would not be a floating-point vector, but rather a list whose first
and third items are floating-point and whose second item is integer:
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  (1.5;2;5e1) input
(1.5;2;50.0) not a floating-point list

A list whose atoms are either integers or floating-point numbers is said to be a
numeric list, but a numeric list whose items are all atoms is not necessarily called
a numeric vector; that term is reserved for a list that is either an integer vector or
floating-point vector.

You have most likely observed by now that K displays some lists vertically and
some horizontally. In general, lists are displayed vertically down to atoms and vec-
tors, while vectors are displayed horizontally no matter how long, if necessary wrap-
ping around onto more than one line.

The Familiar Symbols Applied to Lists

Before introducing lists in the previous section we discussed some familiar sym-
bols and illustrated their meanings with examples using atomic arguments, such
as 3 + 4. In this section we will see how these functions apply to lists. For ex-
ample:

  3 4 5 + 2 0 9
5 4 14

The two lists are added item-by-item; the first item of the one on the left is added to
the first item of the one on the right to produce the first item of the result (3 + 2
gives 5), and similarly for the second items (4 + 0 gives 4) and for the third items
(5 + 9 gives 14). Plus applies independently to the atoms in its arguments, and for
that reason is called an atomic function.

If one argument to Plus is an atom and the other is a list, then the atom argument is
paired with every atom in the list argument:

  10 + 6 3 2 9   3 -4 5 + 1
16 13 12 19 4 -3 6

Not any pair of numeric lists can be used as the arguments to Plus. They must have
the same number of items so that the items match in the manner illustrated above.
Even when the lists are not vectors, the item-matching rule still applies to every
pair of items, and every pair of items within these, and so on down to atoms. Two
numeric lists that are a valid pair of arguments to Plus are said to be conformable.
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Consider the example:

  (3 4 8; 4; 2 7) + (10; 30 20 50 40; 200 300)
(13 14 18
 34 24 54 44
 202 307)

This example shows that the structure of the result is not necessarily identical to
that of either argument, but is something like the “least common multiple” of the
two. Both arguments have three items, and Plus is applied to the three pairs of
corresponding items from the two, as in:

   3 4 8 + 10
13 14 18 item 0 Plus item 0
  4 + 30 20 50 4
34 24 54 44 item 1 Plus item 1
  2 7 + 200 300
202 307 item 2 Plus item 2

The first item of the result, 13 14 18, has three items itself, like the first item of
the left argument, because the first item of the right argument is an atom. The
second item of the result, 34 24 54 44, has four items, like the second item of
right argument, because the second item of the left argument is an atom. Finally,
the third items of both the left and right arguments have two items, and therefore so
does the third item of the result. In general, the arguments can be deeper numeric
lists, but the application of Plus to them can be traced in essentially the same way.
Note that at any point in the descent through the arguments, if an atom is encoun-
tered in one of the arguments the corresponding item in the other one can be a
numeric atom or any numeric list.

All the other dyadic functions associated with familiar symbols are atomic func-
tions like Plus: Minus, Times, Less, More and Equal. The two monadic functions,
Negate and Not, are also atomic functions. There is no notion of conformable argu-
ments in the monadic cases because there is only one argument. Rather, a monadic
atomic function is simply one that applies independently to all atoms in its argu-
ment. For example:
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  - (1 2; 5; -8 4 1 2)
(-1 -2
 -5
 8 -4 -1 -2)

The structure of the result is identical to the structure of the argument.

Familiar Functions on Somewhat Familiar Symbols

The other atomic functions are Divide and Reciprocal, Max, Logical Or, Min, Logical
And, Power and Floor. These are found in most programming languages, and some-
times they are associated with symbols. The symbols used in K reflect the symbols
used in other languages, or are suggestive of what the functions do. For example,
Logical Or is denoted by | and Logical And is denoted by & in both K and C. Both
Divide and Reciprocal are denoted by % for “x divided by y”, and Power is denoted
by ̂  for “x raised to the power y”, both in K and Mathematica.

Logical And and Or apply to boolean atoms 0 and 1. Since they are atomic func-
tions they can be evaluated for all combinations of atomic arguments at once:

  0 0 1 1 | 0 1 0 1
0 1 1 1 All combinations of boolean atomic arguments

for Logical Or
  0 0 1 1 & 0 1 0 1
0 0 0 1 All combinations of boolean atomic arguments

for Logical And

An examination of these results shows that the Logical Or of any two boolean
atoms is also the maximum value of the two atoms, and the logical And is also the
minimum value. Consequently the symbols for Logical Or and Logical And are
also used for Max and Min of non-boolean arguments, respectively. For example:

  5 -4 | 2 7   5 -4 & 2 7
5 7 2 -4

Reciprocal is a monadic function that can be defined in terms of the dyadic func-
tion Divide, just as the monadic function Negate can be defined in terms of the
dyadic function Minus:

  % x  equals  1 % x  just as  - x  equals  0 - x
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Floor of x, which is a monadic function denoted  _ x, is the largest integer less than
or equal to x. For example:

  _ 2.5 7 0 -2.5 -7
2 7 0 -3 -7

Floor is used in the monadic expression  _0.5+ to round its argument to the near-
est integer:

  _ 0.5 + 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
2 2 2 2 2 3 3 3 3 3

Be careful with the use of space characters around Floor. K permits the underscore
character to be part of names (though only reserved names may have underscore as
their first character). Thus, to be safe Floor should not have letters nor digits imme-
diately adjacent to it.

This concludes the tour of the atomic functions. Note that of all the symbols intro-
duced so far, only - and % have both a monadic and dyadic use as atomic functions.

Join and Enlist

The remaining primitive functions are not atomic functions, i.e. do not simply ap-
ply independently to the atoms in their list arguments. Two of these are the funda-
mental list constructors called Join and Enlist. All lists can be built by repeated
applications of these two functions to atoms.

Join is the dyadic function denoted by comma, and Enlist is the monadic function.
Join creates a new list from its two arguments by appending the right argument
onto the end of the left argument:

  1 2 4 3 , 10 -4 1 9 6 5
1 2 4 3 10 -4 1 9 6 5

Notice the items in the result corresponding to the left argument have the same
position in both lists, while the items corresponding to the right argument are shifted
over in the result by the number of items in the left argument. In this example, for
instance, the third item of the result is 4, which is also the third item of the left
argument, while the ninth item of the result, 6, is the fifth item of the right argu-
ment, and 9 is 5 plus 4, where 4 is the number of items in the left argument.
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There are no restrictions on the arguments to Join: any two lists can be joined to-
gether, and any atom can be joined to any list.

Enlist is the monadic function denoted by comma that creates a one-item list with
its argument as the single item. For example:

  ,"a"
,"a"

In this simple example, Enlist is applied to a character atom to make a one-item
character list holding that atom. Observe that the comma is used in the display
format to indicate a one-item list. This is the first one-item list we have encoun-
tered; there has been no way to create or display a one-item list up to now.

The following illustrates how any list can be built with Join and Enlist. Consider:

  ("abcd";`s `t;1 3 2)
("abcd"
 `s `t
 1 3 2)

Each of the items can be built with Join, as follows:

  "a", "b", "c", "d"
"abcd"
  `s, `t
`s `t
  1, 3, 2
1 3 2

However, these three components cannot simply be joined together, for that would
form a nine-item atomic list.

  ("a", "b","c","d"), (`s, `t), (1, 3, 2)
("a";"b";"c";"d";`s;`t;1;3;2)

Instead, each of the components must first be enlisted, and the resulting one-item
lists are then joined together to form a three-item list:



22

  (, ("a", "b", "c", "d")), (, (`s, `t)), (, (1, 3, 2))
("abcd"
 `s `t
 1 3 2)

Read this expression carefully and make sure you know which of the commas
denote Join and which denote Enlist. (If there is data immediately to the left it is
the dyadic case Join, and otherwise it is the monadic case Enlist). Note that no
commas indicating one-item lists appear in the display format of this list; even
though Enlist was used to form the list, none of the items is a one-item list in the
result.

Assignment and Indexing

We are now at a point where it is useful to be able to assign values to names for
future reference and index into lists to select or replace specific items. Assignment
is denoted by the colon. In its simplest form a name appears to the left of the colon
and a value to the right, and the effect of the colon is to associate the value with the
name. The value of a name can be displayed simply by entering the name alone on
a line. For example:

  aBc: 1 2 3 the name aBc gets the value 1 2 3
  aBc enter the name alone to get its value
1 2 3 the value of aBc

Observe that no value was printed after the assignment statement was executed.
This is always the case when the last thing done on a line is assignment with a
colon; the return value is nil.

As is common, a name and its data value are often called a constant or a variable
depending on the context in which they are used, where the value is fixed or chang-
ing.

There are several forms of selection-by-index in K, but we will use only the bracket
form for now because the use of brackets or parentheses for indexing is common
and likely to be familiar.

Any items of any list can be selected by indexing. The first item is selected by index
0, the second item by index 1, and so on. The largest valid index depends on the list
being indexed, and is one less than the number of items in that list. For example:
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  "abcdefghijk"[0]   "abcdefghijk"[1]
"a" "b"
  "abcdefghijk"[10]
"k"

The index itself can also be a list, and in fact any list whose atoms are all valid
indices of the list being indexed, i.e. from the set {0, 1,…n-1}, where the list being
indexed has n items. The items of the index list need not be in any particular order,
and duplicates are allowed. For example:

  "abcdefghijk"[10 0 1]
"kab"

and somewhat more complicated:

  "abcdefghijk"[(0 1; 10; (6 2 6 7; 8 3 4))]
("ab" selected by the first item of the index, 0 1
 "k" selected by the second item of the index, 10
 ("gcgh" selected by the first item of the third item of

the index, 6 2 6 7
  "ide")) selected by the second item of the third item

of the index, 8 3 4

The structure of the result  x[i] conforms to that of the index i. In fact, the result
can be produced by copying the index, and replacing each atom in the copy with
the item of x it selects. For instance, the following display shows the result and the
index list of the last example side-by-side:

("ab" (0 1
 "k"  10
 ("gcgh"  (6 2 6 7
  "ide"))   8 3 4))

Replace each integer on the right with the character in "abcdefghijk" that it
selects, and result will be the list whose display is on the left.

In the examples so far the lists being indexed are simple lists, but any list can be
indexed, and all the general rules illustrated above apply. For example:

  (1 2 3;`a`v`sde`j;"wor")[(1 0;2 2)]
((`a `v `sde `j selected by the first item of the first item of
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the index, 1
  1 2 3) selected by the second item of the first item of

the index, 0
 ("wor" selected by the first item of the second item of

the index, 2
  "wor")) selected by the second item of the second item

of the index, also 2

The items of any variable whose value is a list can be replaced by the combination
of bracket indexing and assignment called index-assignment. For example:

  x: "abcdefghijk"
  x[2]: "C" replace the item at index 2 with "C"
  x
"abCdefghijk" lower case "c" has been replaced with upper

case "C"

As before, the index can have any structure so long as its atoms are all valid indices
of the list to be modified. The value to the right of the colon must conformable with
the index, much like the left and right argument of Plus must be conformable. For
example:

  x[0 10 4]: "AKE"
  x
"AbCdEfghijK"
  x[(0 1;2 0)]: ("X";"YZ")
  x
"ZXYdEfghijK"

In the last example the first replacement to occur is for the index 0 in the first
item 0 1 of the index, and the first item "A" of x is replaced by "X"; the second
replacement is for the index 1 in 0 1, and "b" is also replaced with "X"; the next
replacement is for the index 2 in 2 0, and "C" is replaced with "Y"; and finally,
the last replacement is for the index 0 in 2 0, and "X", which had previously
replaced "A", is replaced with "Z".
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The only time that the order in which the replacements are carried out matters is
when there are repeated atoms in the index — e.g., 0 in the above example —
which cause repeated replacement of the same items. Indexing order is left-to-
right, therefore in such cases the last of the repeated replacements are the ones that
count.

There are no restrictions on the items that can be replaced or on the values of their
replacements:

  x[(1;8 3)]: ("0123";(`a `bc;9 2.3 8))
  x
("Z"
 "0123" the "X" in x was replaced by "0123"
 "Y"
 9 2.3 8 the "d" was replaced by  9 2.3 8
 "E"
 "f"
 "g"
 "h"
 `a `bc the "i" was replaced by ̀a `bc
 "j"
 "K")

We will return to assignment and indexing further along in the tour.

Where

How would you select all the items in a floating-point list whose values are greater
than 10? In more conventional languages you might start with a result list of the
same size and a result count of 0, loop through the floating-point list looking for
items that satisfy the condition, and when one is found, insert it in the result list and
increment the result count by 1. In K all items can be tested at once, the resulting
boolean list is turned into a list of indices, and the floating-point list is indexed all
at once to produce the result list. In particular, the result count is simply the length
of the result list and does not have to be computed separately. The primitive func-
tion that turns boolean lists into lists of indices is called Where, and is the monadic
function of the symbol &. For example:
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  nl: 1 47 -34.6 67.021 0 -2
  nl > 10 the boolean test
0 1 0 1 0 0 where items of nl are greater than 10
  & nl > 10 the indices where the test is True
1 3
  nl[& nl > 10] the items for which the test is True
47 67.021

Order of Evaluation, and the Way to Read Expressions

We have already encountered quite a few expressions involving two or more primi-
tive functions, but have not discussed the order in which these primitives are evalu-
ated within the expressions. Most programming languages follow the lead of con-
ventional mathematical notation and assign a precedence for evaluation among
their primitive functions. For example, in evaluating the following mathematical
expression:

1 - 2x + 4x2

the power function “x squared” is evaluated first, then the two multiplications “2
times x” and “4 times the result of x squared”, and finally the subtraction and
addition.

There is no precedence for primitive function evaluation in K; no function is evalu-
ated before another independent of their relative positions in an expression. In-
stead, K employs the simple rule that in the absence of parentheses, all evaluation
is strictly right to left. For example, copy the above mathematical expression item-
by-item into a K expression as follows:

  1 - 2 * x + 4 * x ^ 2

Does this expression give the same value? No. Following the K evaluation rule,
“x squared” is evaluated first because it is the right-most function. The next evalu-
ation is “4 times the result of x squared”, because it is the next function from the
right. The next evaluation is “x plus the result of 4 times the result of x squared” —
not “2 times x” as in the mathematical expression — because it is the third function
from the right. The next evaluation is 2 times the result of the previous evaluation,
and the last is 1 minus the result of that evaluation. The fully parenthesized equiva-
lent expression is:
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  1 - (2 * (x + (4 * (x ^ 2))))

Parentheses must be used to reflect the mathematical conventions of higher prece-
dence for exponentiation and multiplication, as well as left-to-right associativity of
addition and subtraction. The K expression that gives the same result as the math-
ematical expression is:

  (1 - (2 * x)) + (4 * (x ^ 2))

or more simply:

  (1 - 2 * x) + 4 * x ^ 2

The evaluation rule means that in the absence of punctuation, the right argument of
a dyadic primitive function or the (only) argument of a monadic primitive function
is everything to the right of the symbol. For example, in the last expression the right
argument to Plus is everything to its right, while the right argument to Times in 2 *
x is simply x, because that x is followed immediately by a right parenthesis. An-
other example is:

  & nl > 10

from the preceding section (Where), where the argument to & is  nl > 10, which
is everything to its right. This “everything to the right” rule is more formally known
as long right scope.

Because K has long right scope, the most generally effective way to read K expres-
sions is from left-to-right, in the opposite order from which they are evaluated. For
example, &nl>10 reads quite naturally as “where nl is more than 10”; nl[&nl>10]
as “the items of nl where nl is more than 10”; and (1-2*x)+4*x^2 as “1 minus
2 times x, plus 4 times x to the power 2.”  It should prove worthwhile to use this
reading technique during the rest of the tour.
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CHAPTER 3
PREPARING THE SAMPLE

APPLICATION

It always better to learn about a language by using it in real situations, and so in this
chapter we’ll set up a sample application that will be developed further as the rest
of the tour proceeds. For various reasons related to the limited amount of data base
information that can be displayed on the printed page, the amount of data we will
use is very small in comparison to that of the actual application. But no matter,
because the application developed here will run as is with realistic amounts of
data, and realistic transaction rates as well. This scalability is one feature of K that
makes it so useful in practice. Later on you will see how to manufacture large
amounts of test data for this application.

Two new things are introduced in this chapter, commands and directories. Com-
mands are statements outside the core language that have a variety of different
meanings, much like operating system commands; the only thing they have in com-
mon is syntax. (They are outside the core language for two reasons: one, they do
not have explicit results, and therefore cannot be used like primitive functions to
form expressions; and two, they do not apply to atoms and lists.) There is no sepa-
rate tour section for commands; they are simply introduced as needed. Also, it is
assumed that the general idea of directories is understood, and even though K gives
them their own flavor, the term is used here with minimal introduction. Neverthe-
less, they do require some discussion eventually, and that occurs in a later section
called The K Name Space.
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The sample application is an ATM system, where customers use ATM machines to
carry out simple banking transactions. During the interaction with a customer the
ATM communicates with a central server that determines whether or not a particu-
lar transaction can be carried out, and if so, records the transaction. Transaction
locks and logs are maintained in the server.

The sample application will consist of two separate processes, one representing the
central server and the other an ATM machine. Inserting a credit card in the ma-
chine and entering the PIN will be simulated by simply typing the credit card num-
ber in an appropriate screen window. A list of transactions will then be displayed.
For simplicity the only active transaction will be the most common one, withdraw-
ing cash from checking accounts. When that transaction is selected a window will
be displayed for entering the amount of the withdrawal. The ATM process will
communicate with the server to determine whether or not the withdrawal can be
done. If it can, the server logs the transaction, updates its database, and sends a
message to the ATM to dispense the cash. Otherwise, the server sends a message to
that effect to the ATM process, which will then display its own message explaining
why the transaction failed.

Data Organization and Display

For the moment we do not need to run two separate processes; it is enough to keep
the code for the two processes separate in one process. We will do this by allotting
the code for each process a separate place in K’s hierarchical name space (see the
section The K Name Space that follows). We will start with the server as follows:

  \d .server

This is a command (as indicated by the initial \); it creates a top-level directory
named server (if it does not already exist) and makes .server the so-called
working directory, a term that will be explained in the next section. All global
variables for the server will be placed in this directory.

The server has access to the central records of the bank, which we will simulate as
10 records, each with a name field, a credit card number field and a field for the
start-of-day checking account balance. We will call this table customers, and the
fields will be name, number, and balance. In order to create this data, begin with:

  \d customers
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which creates the directory customers as a subdirectory of .server, and makes it
the working directory. Within this directory the fields are defined as follows:

  name:("Jones, B.G."; "Thomas, I.B."; "Roe, E.P."
        "Layne, B.F."; "Irwin, H.G."; "Marshall, C.J."
        "Blackwell, E.W."; "Rowan, A.M."
        "Rogers, F.M."; "Crosley, F.C.")
  number: 6358607 4153802 5251491 5667632 4031685
  number: number, 7313067 9371526 9855533
  number: number,  8757384 4927607
  balance: 633.58 105.77 533.87 468.00 988.97 310.16
  balance: balance, 722.63 927.68 554.54 6.60

All three lists could be entered on one line, although that line may wrap around
more than one physical line, but were entered on more than one line here to im-
prove readability. (Breaking the definition of name into several lines is explained
in Incomplete Expressions in the chapter Programming Environment.) The vectors
number and balance are entered on more than one line, but there are no syntac-
tically incomplete statements involved. Instead, each is initialized to part of its
final value in one statement, and then the remainder is catenated on in a second
statement. You could define these vectors in a way similar to name, as in:

  balance: (633.58; 105.77; 533.87; 468.00; 988.97; 310.16
               722.63; 927.68; 554.54; 6.60)

but this seems somewhat inconvenient, particularly for long vectors. Also, you
must be careful with floating-point vectors. In the vector form above, the whole
number 486.00 could have been entered as the integer 468 and balance would
still have been a floating-point vector, but not in the semicolon-parentheses form,
where balance would then become a numeric list with one integer atom among
floating-point atoms.

Here’s a little exercise: what does the following definition of  balance yield?

  balance: (633.58 105.77 533.87 468.86 988.97 310.16
               722.63 927.68 554.54 6.60)

Returning to the sample application, we will simulate a database by writing this
table to a file. First, go back up one level from the customers directory to the
.server  directory:



32

  \d ^

and then write the table to a file:

  "customerDb" 1: customers

Almost any data object can be written to a file, and directories are data objects. The
symbols 1: denote a dyadic function that writes an object to a file. Just as both
Minus and Negate are denoted the same, there is a monadic function denoted by
1: as well, which will be used later in this section.

To begin work on the ATM side, define a new top-level directory and make it the
working directory:

  \d .atm

We need a screen display for customers to enter credit card numbers, another for
the transaction list, and a third for customers to enter the amount of the withdrawal.
In the first and last cases we’ll start with character vectors that suggest the location
of the entry area in the screen displays:

  credit_card_number: "xxxxxxx"
  cash_amount: "xxx"

Either of these objects can be displayed on the screen, simply by saying “show it”,
as in:

  `show $ `credit_card_number

The display will look like:

Customers can type in the entry fields, and the object automatically takes on the
entered value. This is true of any global variable displayed on the screen as data:
type a new value on the screen and the object changes accordingly. Or, change the
value of any object with an assignment expression and its screen display changes.
In K applications, what you see and interact with on the screen is simply a visual
manifestation of a K data object.
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The display of any object can be removed from the screen by saying “hide it”, as in:

  `hide $ `credit_card_number

If you are working alongside in a K session, define credit_card_number and
show it as above, then type something in its entry field and press Return, compare
that entry with its value by typing its name alone on a line (and pressing Return),
and then redefine its value by typing in an assignment statement and watch its
screen value change.

We will save the initialization of the ATM process in what is called a script file,
which is simply a text file holding K expressions and programs (which have yet to
be discussed). When a script file is loaded into a K process, the lines of text are
executed from top to bottom as if they had been entered at the keyboard. Script
files have the extension “.k” or no extension.

Create a text file named atm.k and enter the following four lines:

  \d .atm
  credit_card_number: "xxxxxxx"
  cash_amount: "xxx"
  `show $ `credit_card_number

Save the file. When the load command:

  \l atm

is entered, the two variables will be created and credit_card_number will
appear on the screen, as in the above display. Or, the name of the script can be
given on the command line when K is started, as in

k atm

Returning to the server part of the application, a script file must eventually be
created for the server as well. Let’s start now. Create a text file named server.k
with just one expression in that file, which loads the database:

  \d .server
  customers : 1: "customerDb"

To understand this expression, read it from the left: the variable customers is as-
signed the value of the expression 1:".k.customerDb". The symbols 1: de-
note a monadic function that is applied to the character vector "customerDb"
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and brings the data object stored in the file named customerDb into the current
session. The dyadic use of  1: is for writing data objects to files (see above). Save
the file.

The last thing to do in setting up this application is to prepare for communication
between the two processes (see the chapter Programming Environment). You will
need two consoles or shells for running two K processes. The server process must
specify a communication port number in its startup command which the ATM pro-
cess uses to initiate communication with the server. To start the server process,
enter the following command in one of the two consoles or shells:

k server -i 1234

and then enter

k atm

in the other to start an ATM process. Do this now to make sure your script files are
defined correctly.

Developing this application further amounts to appending variable and function
definitions to the two script files and then restarting the server and ATM processes
with the above commands. The transaction list will be constructed later.

The K Name Space

K has a hierarchical name space, with directories containing other directories and
non-directories, all under one root directory, which is called the K name space or
K-tree, or when the context of the discussion is clear, simply the name space or the
tree. Directories are ordinary data objects in K, with their own data type, and there-
fore anything in the name space is a valid data object. Every object in the name
space has a unique compound name of the form:

.simpleName1.simplename2.���.simpleNameN

A simple name contains one or more alphabetic, numeric, or underscore (_) charac-
ters and must begin with an alphabetic character. (See the section Attributes for the
meaning of names containing optional dots). Then all simple names in a compound
name are names of directories except, possibly, the one furthest to the right. When
two simple names are adjacent to one another in a compound name the one on the
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left is said to be the parent of the one on its right, which in turn is a child or entry of
the one on its left. If the two simple names are not necessarily adjacent their rela-
tionship is ancestor-descendent instead of parent-child. In the compound name
p.q.r, the name p is the parent of q and an ancestor of both q and r, while r is an
entry in q and a descendent of both p and q.

The left-most dot in the compound name displayed above refers to the root direc-
tory of the name space, and the entries in the root directory such as simpleName1
are said to be top-level objects. The above compound name is called an absolute
name because it provides the full path to the object simpleNameN. A simple
name identifies an object relative to its parent directory, and a compound name that
does not begin with a dot identifies an object relative to the parent directory of its
left-most simple name; consequently any name that does not begin with a dot is
called a relative name. For example, the object referred to by the absolute name
.p.q.r.s is also referred to by the relative name s (relative to its parent .p.q.r),
by r.s relative to p.q, and by q.r.s relative to p . All objects with simple
names relative to a given directory are called entries in that directory.

We will create a sample name space for experimentation by starting a new K pro-
cess and loading both the server and atm scripts. Enter:

k

on the command line of a shell, which starts a K session, and then enter the follow-
ing K command in that session:

  \d
.k

This command displays the so-called working directory, in this case the default .k.
It is called the working directory, and often the current directory, because any ob-
jects with relative names created from now until the working directory is changed
will be relative to this directory. For example, if:

  a: 1 2 3
  b.x: `xyz `abcd

then .k is the parent of both  a  and b.x, and .k.a  and .k.b.x  are the absolute
names of these objects:
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  .k.a   .k.b.x absolute names
1 2 3 `xyz `abcd
  a   b.x relative names
1 2 3 `xyz `abcd

The following command lists all entries in the current directory:

  \v
a b

Note that in creating the object  b.x  above, the directory b was also created.

The working directory can be changed with the command  \d name, where name
is any simple or compound name, and identifies the new working directory. If name
is relative then the new working directory is a descendent of the current one, but if
it is absolute then there is no necessary relation between the two. For example,
enter:

  \d c.d

and the working directory becomes .k.c.d. Enter:

  a:"abcd"

and there are now two objects in the name space with the simple name a, namely
.k.a  and  .k.c.d.a.  Now enter:

  \d .k

which makes .k  the working directory again, and:

  \v
a b c

Observe that when we created the directory c.d with the command \d c.d, the
intermediate directory c was also created.

The entries in any directory can be listed with the command \v name:

  \v b   \v c   \v c.d
x d a

Now change the current directory to .k.c and add the the code for the sample
application:
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  \d c it was .k; now it is .k.c
  \l server
  \l atm

Recall that the script server.k creates the directory .server and makes it the
working directory, and analogously for atm.k and .atm. Now enter:

  \d
.k.c

Even though the working directory is changed within each script file load, it reverts
to the directory .k.c  in effect before the loads were done. This is always the case
when scripts are loaded. Now enter the following command:

  \d .

which makes the root directory the working directory. Make sure you understand
each of the following:

  \v
k server atm
  \d server
  \v
customers
  \d customers
  \v
name number balance
  \d
.server.customers
  \d .atm

If you are following along at a computer, you should continue to explore this name
space.

Two important points to remember are that absolute names can be used within any
working directory and that compound names can be used wherever simple names
are used. For example, in the section Data Organization and Display, when defin-
ing entries in the working directory customers we reset the current directory to
its parent so that we could write customers to a file using its simple name.
However, we could have remained in the customers directory and written it to a
file from there, using its absolute name .server.customers, as in:
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  "customerDb" 1: `.server.customers

Secondly, earlier in this section we set the working directory to .k and then de-
fined b.x, which had the effect of creating the directory entry b in .k and the
symbol vector entry x in b. We can access this x by its absolute name from any-
where, as in:

  .k.b.x[0]
`xyz

or from any ancestor with the appropriate relative name:

  \d .k
  b.x[1]: `klmn
  \d b
  x
`xyz `klmn

Cross-Sectional Indexing

So far we have concentrated on accessing the items of a list, but the items them-
selves can have items, which in turn can have items, and so on. In this section we
will see how to select and replace items at depth within a list.

Consider the string vector

  o:("abcdef"; "ABCDEFGH"; "0123456789")

The character "D" in the second item can be selected as follows:

  o[1; 3]
"D"

Or, the characters "G" and "D" from the second item, in that order:

  o[1; 6 3]
"GD"

Or, the characters at index positions 6 and 3 in both the second and third items:

  o[1 2; 6 3]
("GD"
 "63")
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This form of indexing is called cross-sectional indexing, as the latter example sug-
gests.

If an index position is left blank, it is treated as if all valid indices had been speci-
fied. For example:

  o[;3]
"dD3"

selects the item at index 3 from all three items of o, and

  o[2;]
"0123456789"

selects all items of the item at index 2. That is, o[2;] is identical to o[2].

Observe that o[1 2;2 0] is not the same as o[(1 2;2 0)]. In the latter case
the parentheses serve to form a single list with two items, and this expression is of
the form o[i]. Consequently four items of o are selected:

  o[(1 2; 2 0)]
(("ABCDEFGH"
  "0123456789")
 ("0123456789"
  "abcdef"))

On the other hand, there are two index lists in  o[1 2;2 0]; this expression is of
the form o[j;k], and selects the items with indices 1 and 2 from o, and then the
items with indices 2 and 0 from each of those:

  o[1 2;2 0]
("CA"
 "20")

As in the earlier section on indexing (see Assignment and Indexing), this form is
completely general. The items of the indexed arrays do not have to be similar in
any way, and the selected items at depth do not have to be atoms. Moreover, there
can be as many indices separated by semicolons as there are levels to be indexed.
For example:
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  m:(1 4 -2; (`x `yz `q_r; "a"); 2.3)
  m[1;0;2]
`q_r

Observe here that if the first index is 0 then only one other index can be given,
which would select items of  m[0]. Also, if the first index is 2 then the atom 2.3 is
selected and no further indices can be specified.

Index assignment extends to this form of indexing: any item at any depth can be
replaced by anything, multiple items can be replaced at once, and duplicate atoms
within any index cause items to be replaced more than once:

  m[1;0]
`x `yz `q_r
  m[1;0;2 1 2]: ("two";("one";1);"TWO")
  m[1;0]
(`x unchanged
 ("one";1) item 1 of item 0 of item 1 is replaced with ("one";1)
 "TWO") item 2 of item 0 of item 1 is replaced with "TWO"

(after first being replaced with "two")

Symbolic Indexing

When setting up the sample application we defined a directory customers in the
server directory with three entries, and saved the directory and its contents in a file.
That directory is a K data object, as are all directories, and as such has a data type,
called dictionary. The reason for using two different names for the same thing will
be discussed later.

A directory can be indexed in much the same way as a list, except the its entry
names — as symbols — are used as the indices. The result consists of the values of
those entry names. For example, define a new top-level directory p:

  \d .k.p

We are now in the p directory. Define the following entries:

  a: 1 3 5 7
  b: "abcdefgh"
  c: `x `y `z
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Now return to the parent directory of p:

  \d ^

Select the value of a from the directory p by using a symbolic index:

  p[`a]
1 3 5 7

Select the values of the entries b and a, in that order:

  p[`b`a]
("abcdefgh"
 1 3 5 7)

Select the items at indices 3, 0 and 1 from both b and a:

  p[`b`a;3 0 1]
("dab"
 7 1 3)

Replace the items of a at indices 3, 0 and 1:

  p[`a;3 0 1]: 70 10 20
  p[`a]
10 20 5 70

Indexing dictionaries is exactly like indexing lists except that the indices are sym-
bols holding entry names instead of integers.

Directory entries can be accessed by their compound names as well as by indexing,
and compound names can be used in every way that simple names are used. For
example, use Assignment to create a new entry in p:

  p.d: (1 2;`x `y)

Now use indexing to reference this entry:

  p[`d]
(1 2
 `x `y)
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Directory Assignment and Structure

Directories are ordinary data objects and can be assigned their contents in the ordi-
nary ways. For example, a new directory q can be formed from p simply by assign-
ing q the value of p:

  q: p
  q ~ p
1                           q and p are identical

This form of assignment can also be used to reassign the contents of an existing
directory, but here we must be somewhat cautious. It often occurs that we want to
reassign the values of all entries in a directory but not change the names of the
entries, and later on we will see examples of this. We will also see how to establish
spreadsheet-like formulas among global variables that automatically maintain the
relationships among variables when some of them change values. Re-assigning an
existing directory with a simple assignment statement like the one above has the
effect of invalidating any spreadsheet-like relationships involving its entries, and
thereby leaving the application in an inconsistent state. Consequently we need a
way to safely replace the values of all entries in a directory.

We have seen previously that eliding an index means that all possible indices, in
their natural order, are used. For example, all values of a directory are selected by:

  q[]
(1 3 5 7
 "abcdefgh"
 `x `y `z
 (1 2
  `x `y))

and all values can be replaced, item-by-item, by the corresponding assignment state-
ment:

  q[]: ("xw$3"; `a `bb `ccc `d; 1 2.4 -4 6; 5 3 1 0)

The number of entries of q cannot change as a result of this form of specification.
The new value must be a list with as many items as q has entries, or an atom, in
which case every entry of q takes on the value of the atom.
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(This form of assignment applies to lists as well as directories; for a list x and
x[]:b,  the number of items of x cannot change, if b is a list then #b must equal
#x, and if b is an atom then after the specification, every item of x equals b.)

Here is the way the directory q is displayed in the session log:

  q
.((`a;"xw$3";)
  (`b
   `a `bb `ccc `d
   )
  (`c
   1 2.4 -4 6
   )
  (`d
   5 3 1 0
   ))

This is the first display of a directory value in the tour, so let’s look at it in detail.
First of all, the leading dot (all the way to the left on the line under the name q) is
like the leading comma in the display of one-item lists. The dot denotes a monadic
primitive function that creates a dictionary data object from its list argument. We
will discuss this function later on, and dictionaries as well. (Directories are global
variables whose values are dictionaries.)

The list that starts to the right of the dot has four items, one for each entry in q, and
we will refer to these items as the entry items. Each entry item (always) has three
items. The first item of each entry item is a symbol holding an entry name, and you
can see that q has entries a, b, c, and d. The second item of each entry item is the
value of the corresponding entry, and these values are the ones assigned above.
Finally, each entry item has a third, empty (nil) item. The third item of a valid
dictionary entry will always be either nil, or a dictionary called the attribute dictio-
nary of the entry. In the example, they do not yet exist because no attributes have
been assigned values. Attributes are discussed next.
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Attributes

Every global variable carries along a set of auxiliary information known collec-
tively as its attribute set. For example, a global variable can be displayed on the
screen in one of several ways that are referred to as display classes; the display
class is specified by setting the display class attribute of the variable to a particular
value. The attributes of a global variable all reside in a directory associated with
the variable called its attribute directory. The name of the attribute directory is the
name of its associated variable followed by a single dot. For example, p. is the
attribute directory of p and x. is the attribute directory of x, etc. Any name that
ends in a dot must be the name of an attribute directory.

The compound name p.x refers to the entry x in the directory p; in effect, the
compound name is created by appending a dot to the right of directory name and
then appending the entry name to the right of that. The same rule applies to entries
in attribute directories: append a dot to the right of the attribute directory name,
and then append the attribute name. For example, the name of the attribute x of the
global variable b is b followed by dot (signifying the name of the attribute direc-
tory), followed by dot (signifying that an entry name follows), followed by x, as
in b..x.

In general, whenever a pair of dots appears in a compound name, the segment to
the right of the pair is an attribute of the global variable named by the segment to
the left.

Can more than two dots appear together in a compound name?  No. That would
mean that attribute directories could themselves have attributes, and that is not
allowed. Except for this restriction, attribute directories are like any other, and in
particular are ordinary data. Moreover, the individual attributes are ordinary data
objects in every way, and in particular can have attributes themselves. For ex-
ample, x..y..z  is the name of the attribute z of the attribute y of the variable x
and  x..y. is the name of the attribute directory of the attribute y of the variable x.

Some attributes have reserved meanings, such as the display class attribute de-
scribed above, whose name is c. All other entries in an attribute dictionary can be
user-defined. However, you should consider all one-character attribute names to be
reserved, even if they presently have no defined meaning.

Attributes are associated with names of global variables, not with values. For ex-
ample, if x and y are global variables and y is assigned the value of x, as in:
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  y: x

then y has not inherited the attributes of x. A separate specification of attribute
dictionaries is required if you want the attributes of y to be the same as those of x:

  y.: x.

In this section we will introduce two reserved attributes, the one named c for dis-
play class mentioned above and the one named a for arranging the entries of a
dictionary displayed on the screen. In the next section the one named l for label-
ling screen displays will be introduced. This will allow us to create the transaction
list for the ATM process in the sample application, but first, let’s look at a simple
example. We will create a screen display with two buttons, where pressing one
button will display the contents of a variable named a on the screen, while the other
will remove the display of a from the screen.

  \d .k.bx
  a: "ATM"
  show: "`show $ `a"
  hide: "`hide $ `a"

If the directory holding these variables is displayed on the screen without setting its
display class attribute or that of any of its entries, it will be displayed in default
format, which looks like:

  \d ^
  `show $ `bx

(Observe that we changed the working directory to the parent of .k.bx so that we
could refer to bx in the show expression by its simple name. However, we could
just as well used its absolute name and executed `show$`.k.bx  without chang-
ing the working directory.)
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Display class attribute settings affect the appearance and functionality of displays.
Any global variable whose value is a character string holding an expression can be
displayed as a button; the expression is evaluated when the button is pressed. The
global variables show and hide have this property. To display them as buttons,
simply set their display class attribute to `button, as follows:

  bx.show..c: `button
  bx.hide..c: `button

If either of these settings had been made before bx was shown, the display would
have the appearance of a layout, or form. (In general, whenever the class attribute
of a dictionary entry is set to a value other than the default `data, the default
display class of the dictionary becomes `form). Since bx is already displayed, set
its class attribute to `form, and if you are working along in a session, you will see
the screen immediately change:

  bx..c: `form

The variable a can be left in the default display class, which is `data. (Even
though there is a default class known internally to K, the attribute a..c does not
have that value. Instead, a..c has no value because none has been set. However,
a..c  can be explicitly set to the default value, for instance when you want to
return to the default after setting the display class attribute to something else.)

The screen display will now look like that shown on the left, below:

We want only the entries show and hide to be displayed in bx, because the other
entry, a, will be displayed separately as a result of the button actions. (The default
is to show all entries in a vertical list.)  Which entries are shown and how they are
arranged is controlled by the arrangement attribute of bx, which is named a:
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  bx..a: `show `hide

The display will now look like that on the right, above. If the bx display is in the
upper left corner of the screen, move it aside and then press the show button. You
should now see the display of a in the upper left corner. Press the hide button and
that display will go away.

This display can be rearranged simply by re-specifying the order of the entries in
the arrrangement attribute. For example, set:

  bx..a: `hide `show

and the buttons will immediately change places. Or, set:

  bx..a: ,`hide `show

and the buttons will appear side-by-side; as in:

 (Why the latter expression should have this effect is hard to explain because bx
has so few entries on the screen. We will return to this point in the next section.)

The Sample Application Revisited

Let’s return to the ATM process in the sample application and set up the transaction
list. There will be four transactions: get cash from checking, get cash from savings,
deposit to savings, and balance inquiry. Each transaction will be represented by a
button, so that when a button is pressed the corresponding transaction is executed.
Since we have no expressions to evaluate right now, the values of all transaction
buttons will be the empty character string "". Later on we will redefine the button
for cash from checking, but the others will remain as is. The transaction list itself
will be a directory holding the transaction buttons as entries:

  \d .atm.transaction_list
  cc: "" cash from checking
  cs: "" cash from savings
  ds: "" deposit in savings
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  bi: "" balance inquiry
  cc..c: cs..c: ds..c: bi..c: `button

set all display classes to `button
  \d ^
  transaction_list..c: `form
  `show $ `transaction_list

The display of transaction_list will look like that on the left, below:

In the previous section the variable names show and hide were meaningful as the
labels when the variables were displayed as buttons. The variable names in the
sample application are not so meaningful, but meaningful names are usually long
and it is cumbersome to work with long variable names. Fortunately, the text on a
screen display can be assigned independently of the variable name, as the value of
variable’s label attribute. If you are working along in a session, you will see each
label change as you do the following assignments:

  \d transaction_list
  cc..l: "cash from checking"
  cs..l: "cash from savings"
  ds..l: "deposit in savings"
  bi..l: "balance inquiry"

Now, the display looks like that on the right, above.
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The arrangement attribute of transaction_list can be used to rearrange this
display. For example, cash from checking can be put above cash from savings in a
column on the left, with balance inquiry above deposit in savings in a column on
the right, as follows:

  .atm.transaction_list..a: (`cc `bi; `cs `ds)

The display becomes:

You can experiment with other arrangements. Also, transaction_list is a
long name, and could be shortened to tl. The labels at the top of the above dis-
plays would then be .atm.tl. In that case, it would be possible to get the same
look as shown by simply setting the label attribute:

  .atm.tl..l: ".atm.transaction_list"

For any global dictionary x, the top level of x..a specifies a vertical list in the
display whose ith row from the top contains the entries named in x..a[i]. Each
item contributes a horizontal list; the jth column from the left in the ith row from
the top contains the entries named in x..a[i;j]. And so on. Each successive
level in x..a contributes vertical and horizontal lists alternatively. For example, if
there are six entries `a through ̀ f, then the following values of the arrangement
attribute have the given meanings:

`d`e`f `a`b`c a vertical list of 6 rows in the specified order
(`a`b; `c`d; `e`f) a vertical list of 3 rows with 2 columns each
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(`a`b`c`d; `e`f) a vertical list of 2 rows with 4 columns in the
top row and 2 in the bottom row

,(`a; `b`c; `d`e`f) a horizontal list of 3 columns with 1 row in
the first column on the left, two rows in the
second, and three rows in the third

,`a`b`c`d`e`f a horizontal list of all entries (like the hide-show
example in the previous section)

In the screen displays below, the label attribute .l has been set so that the arrange-
ment of each object is in the title area, and the height attribute .y of the first has
been set to zero so that the height of the object is minimized.
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You can experiment with the arrangement rule by constructing a directory with six
or so entries and setting its arrangement attribute to various values. Be sure to set
the display class attribute of the directory to `form.

The format attribute is used to control the appearance of numeric and character
data on the screen. Examples will be given later in the tour.
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CHAPTER 4

MORE PRIMITIVE FUNCTIONS

Atom, Count and Shape

We will now return to the primitive functions for awhile. K data objects are self-
describing, in that they carry along information about themselves, such as their
type, whether they are atoms or lists, and in the case of lists, their item count. There
are several primitive functions which produce this information as their results. For
example, the monadic function denoted by the symbol @ is called Atom, and its
result is 1 if its argument is an atom and 0 if it is a list (i.e., not an atom). For
example:

  @ "a"   @ ""   @ "abc"
1 0 0

which illustrates the fact that one character between double-quotes denotes an atom
and any other number denotes a list. The monadic function denoted by the symbol
# is called Count and its result for a list argument is the number of items in the list;
the result is 1 for any atom. For example:

  # "a"   # ,"a"   # "abc"
1 1 3

The count of a list is often referred to as its length, particularly for character strings.

The monadic function denoted by the symbol ^ is called Shape. It is an extension
of Count that includes information about the rectilinearity of its argument. The
result of Shape is always an integer vector. For example:



54

  ^ (1 2 3 4; "abcd"; `w `x `y `z)
3 4
  ^ (1 2 3 4; "abc"; `w `x `y `z)
,3

The argument to Shape in the first expression defines a list of count 3, where all
three items have count 4. The shape of this list is the integer vector 3 4. The
argument in the second expression also defines a list of count 3, but its items do not
all have the same count. The shape of this list is the one-item integer vector ,3.

In general, the shape of a list always has at least one item, and the first item of the
shape is the count. If all items of the list are lists with the same count, then the
shape has at least two items, and its second item is that common count. If all items
of items are lists with the same count, then the shape has at least three items and its
third item is that common count, and so on. As long as all items at each successive
depth are lists with the same count, those counts will appear as items in the shape.

A matrix is defined to be a list whose items are vectors that all have the same count.
The list in the first example above is a matrix, the one in the second example is not.
Creating an expression that tests whether or a not a list is a matrix is an interesting
exercise. The items of the items of a matrix may all have the same count or not.
Consequently a matrix is a list whose shape has at least two items, which means
that the count of the shape is at least 2. That is, the data object x is a matrix if the
result of the expression:

  # ^ x Read this expression from left to right:
the count of the shape of x

is at least 2. For example:

  # ^ (1 2 3 4; "abcd"; `w `x `y `z)
2
  # ^ (1 2 3 4; "abc"; `w `x `y `z)
1

The expression

  ~ 2 > # ^ x Read this expression from left to right:
not 2 is more than the count of the shape of x
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is a test of whether or not x is a matrix, in that the value of the expression is 1 if it
is a matrix and 0 if it is not.

Observe that reading the last expression from left to right produces the awkward
phrase “not 2 is more than...”. In this and like cases, it is best to transpose the ~ and
2 when reading so that the phrase becomes “2 not more than...”.

Finally, there are lists with no items called empty lists, whose generic form is de-
noted (). Each type of empty vector has its own specific notation: !0 for inte-
ger, 0#0.0 for floating-point, 0#` for symbol, and "" for character. (These nota-
tions are explained in the next two sections.) The count of any empty list is 0.

  # ()   # !0   # 0#`
0 0 0

The empty list is an ordinary list that can occur as both function arguments and
results. For example, the primitive function Where — the monadic function de-
noted by & that was introduced previously — produces a list of indices where the
items of a boolean vector equal 1. The boolean vector most likely comes from
testing some condition on the items of another list, and if no item satisfies the
condition, the list produced by Where will be the empty integer vector. For ex-
ample:

  & 10 < 1 -12 5 6 read this expression from left to right:
!0 where 10 is less than  1 -12 5 6

There are no items of  1 -12 5 6  greater than 10. A test that at least one item
satisfies the condition is:

  0 < # & 10 < 1 -12 5 6
0

We will see another form of this test later.

Some final comments to this section; we said above that the shape of any list has at
least one item. The shape of an empty list is naturally enough the one-item list ,0.
In contrast, the shape of any atom is the integer form of the empty list:

  ^ ()   ^ 3   ^ `shape
,0 !0 !0



56

Take

The primitive function Take is the dyadic function denoted by #. Its purpose is to
create lists of specified counts and shapes. It is the most basic list constructor after
Join and Enlist.

The left argument specifies the count or shape of the result and the right argument
provides the material that fills it in. For example, an integer atom left argument
specifies the count of the result:

  8 # `a an atom is replicated as many times as necessary
`a `a `a `a `a `a `a `a
  8 # 1 -3 4 the items of a short list repeat as necessary
1 -3 4 1 -3 4 1 -3
  8 # "abcdefghijklmnopqrs"
"abcdefgh" some items of a long list are not used

An integer vector left argument specifies the shape of the result. As in the case of
an integer atom on the left, the contents of the right argument are used cyclically to
fill in the specified shape:

  3 4 # `a
(`a `a `a `a
 `a `a `a `a
 `a `a `a `a)
  3 4 # 1 -3 4
(1 -3 4 1
 -3 4 1 -3
 4 1 -3 4)
  3 4 # "abcdefghijklmnopqrs"
("abcd"
 "efgh"
 "ijkl")

If the left argument is 0, the resulting list has a count of zero. This helps explain the
notation for the empty symbol and floating-point vectors, 0#` and 0#0.0 respec-
tively, introduced in the previous section.
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Enumerate

Another important list constructor is the monadic primitive Enumerate, denoted by
the exclamation mark. For a non-negative integer atom x, Enumerate produces a
list of the integers from 0 to x-1. These integers are valid indices into lists of length
x. For example:

  !10   (!10)[!10]
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Enumerate also produces symbol vectors from dictionaries and directories, by re-
turning all their entries. Again, there is the connection to indexing, since each item
in the return value is a valid symbolic index into the argument. Returning momen-
tarily to the example in The Sample Application Revisited from last chapter:

  \d .atm
  !transaction_list
`cc `cs `ds `bi

We have already seen Enumerate in the notation for the empty integer vector !0 .
Now it is apparent why this notation is used; Enumerate always produces an inte-
ger list for non-negative integer arguments, in this case a list of length 0.

Match

The primitive called Match is the dyadic function denoted by the symbol ~. The
result of Match is 1 if its two arguments have identical values, and otherwise it is 0.
For example:

  1 2 3 ~ `a `b   1 2 3.0 ~ 1 2.0 3
0 1
  1 2 3 ~ 1 2.0 3   1 2 3 = 1 2.0 3
0 1 1 1

Match is not an atomic function like Equal. Match indicates whether or not its two
arguments have identical values, whereas Equal provides a boolean list indicating
where corresponding atoms in its two arguments are identical. Note that Match
distinguishes integers from floating-point numbers. The above example on the lower
left of the four tests whether or not the integer vector 1 2 3 matches the floating-
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point vector 1 2.0 3; it does not, even though, as the example on the lower right
(above) shows, the two vectors are item-by-item equal. Similarly, the different forms
of the empty list do not match each other.

Find

Searching and sorting are the bread and butter of many computer applications as
well as generally useful tools for programmers. K provides several primitive func-
tions of these kinds, all with highly efficient implementations.

The basic search primitive is the dyadic function denoted by the symbol ? and
called Find. Find is based on Match. The left argument can be any list l. The right
argument r can be anything, and the result of the function is the smallest index i for
which l[i] matches r. For example:

  `a `xx `r_q ? `xx
1 `xx matches item 1 of the left argument
  1 -4 3 5 2 3 ? 3
2 3 matches both items 2 and 5 of the left argument;

the result of Find is the smallest index

The items of the left argument do not have to be atoms. The only restriction on the
arguments is that the left argument must be a list. For example:

  ("abc";"defg";1 2.3 4) ? 1 2.3 4
2 1 2.3 4 matches item 2 of the left argument

What if the right argument does not occur among the items of the left?  The largest
valid index of a left argument l is the count of l minus 1, or (#l)-1, which is the
index of the last item. Consequently, the smallest invalid index is #l, and that
value is defined to be the result of Find when the right argument does not occur
among the items of the left. For example:

  1 3 -4 5 2 3 ? 7
6

The right argument 7 does not match any item of the left argument, whose count is
6. A test that the right argument r occurs among the items of the left argument l is
that the result l?r is less than the count of l:

  (#l) > l ? r
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In the sample application, an ATM process will send a customer’s credit card num-
ber, say n, to the server process for validation. The customer’s records can be lo-
cated with Find, as in:

  i: number ? n

If i is less than #n then an OK message should be sent to the ATM process, and
otherwise an “Unrecognized Card” message.

We will look at high performance searching later on.

Grade Up and Grade Down

There are two primitive sorting functions, one for sorting in ascending order and
the other descending. Both are monadic, and both sort the items of their arguments.
The function for sorting in ascending order is called Grade Up and is the monadic
function denoted by <, while the other one is called Grade Down and is denoted by
>.  For example:

  <"asedg"   >"asedg"
0 3 2 4 1 1 4 2 3 0

Neither sort function produces the rearrangement of its argument as its result. In-
stead, each one produces a vector of indices which can be used to rearrange the
items:

  "asedg"[0 3 2 4 1]   "asedg"[1 4 2 3 0]
"adegs" "sgeda"

The reason for this is that the list being sorted often has related lists that should by
reordered to match the order of the sorted list. In the sample application, for in-
stance, suppose that we want to display the database customers sorted in the
order of decreasing account balances. If we execute:

  \d .server
  i: > customers.balance
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then the items of customers.balance[i] are in decreasing order, and the
items of customers.name[i] and customers.cc_number[i] correspond
to this order. The values of all entries in customers can be reordered at once
with customers[;i], and all values can be reassigned with:

  customers[]: customers[;i]

To see the effect — literally — of this expression, first display the table on the
screen with:

  `show $ `customers

Now when you execute the above expression you will see the rows in the table
change order. (In the next section we’ll see how to properly format the name col-
umn.)

Any list can be put in sort order, although it will rarely make sense to do so when
the items are very different in type and structure. The most common cases where
sorting is useful are integer and floating-point vectors, symbol and character vec-
tors, and string vectors, which are lists of character vectors. We have already seen
examples of sorting character vectors and floating-point vectors. For the remainder
of this section we will be concerned with symbol and string vectors.

Symbols sort alphabetically, like the entries in dictionaries. For example, the sym-
bol items in the following vector hold the last names of all the customers:
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  a: `Jones `Thomas `Roe `Layne `Irwin `Marshall
  a: a, `Blackwell `Rowan `Rogers `Crosley

This list is sorted alphabetically as follows:

  a[< a]
`Blackwell `Crosley `Irwin `Jones `Layne `Marshall `Roe
`Rogers `Rowan `Thomas

(Note that lines printed in the session log that are too wide wrap around to the next
line.)

Now consider the same information in a string vector:

  c: ("Jones"; "Thomas"; "Roe"; "Layne"; "Irwin";
      "Marshall"; "Blackwell"; "Rowan";
      "Rogers"; "Crosley")

If this listed is sorted in the same way as a we get:

  c[<c]
("Roe"
 "Irwin"
 "Jones"
 "Layne"
 "Rowan"
 "Rogers"
 "Thomas"
 "Crosley"
 "Marshall"
 "Blackwell")

This is not quite alphabetical order, but almost. The result is as if the argument list
was first sorted in the order of increasing string lengths, and then alphabetically
within each subgroup of strings with the same length. This list would have been
sorted alphabetically if all the strings had the same length, which could be arranged
by padding the shorter ones with blanks. Or it could be sorted alphabetically if the
strings could be converted to symbols. Simple expressions for both solutions will
be given in the next section.
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Formatting and Unformatting Data

The two functions denoted by the symbol $ provide the means for converting nu-
meric and symbol data to and from character strings. These functions are used for
controlling the appearance of data in reports and on the screen.

The monadic function denoted by $ is called Format and produces a character
string representation of any atom. For example:

  $ 234.37   $ `axyz
"234.37" "axyz"
  $ -23012   $ "a"
"-23012" ,"a"

Format applies to a list by applying independently to every atom in the list, just like
a monadic atomic function such as Negate:

  $ (234.37; `axyz)
("234.37"
 "axyz")

In particular, the Format of a character string is identical to itself. Technically,
Format is not an atomic function because it produces character strings, not atoms,
when applied to atoms.

More control is provided by the dyadic function denoted by $, also called Format.
The length of the resulting string can be specified with an integer left argument:

  8 $ (234.37; `axyz; -23012; "abd_3")
("  234.37"
 "    axyz"
 "  -23012"
 "   abd_3")

The resulting strings will be left justified if the left argument is negative.

A floating-point left argument can be used to specify the number of decimal digits
that should appear in the result as well as the length, as in:

  8.2 $ 92.71542
"   92.72"
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Note that we now have a way to sort a list of character strings of different lengths if
we know the length of the longest one. In the example from the preceding section,
the longest name is Blackwell, with 9 characters. The name of that list is c; shorter
names are padded on the right with blanks by -9 $ c; the sort order of the
resulting list is  < -9 $ c; the list c is sorted in alphabetical order by:

  c[< -9 $ c]
("Blackwell"
 "Crosley"
 "Irwin"
 "Jones"
 "Layne"
 "Marshall"
 "Roe"
 "Rogers"
 "Rowan"
 "Thomas")

This solution leaves an interesting question, which we will eventually answer:  How
is the maximum length of a list of character strings computed?

The dyadic function denoted by $ can also convert character strings to other speci-
fied data types, which in effect unformats data that has been formatted to character
strings. In this role the function is called Form. The left argument is a prototypical
value representing the data type of the result: 0 for integer, 0.0 for floating-point, ̀
for symbol, and for completeness, " " for character atom or string. For example,
the following produce an integer value and floating-point value:

  0 $ "123"   0.0 $ "123.45"
123 123.45

while the next example produces a symbol:

  ` $ "Jones, Ann"
`"Jones, Ann"
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The last result is something we haven’t seen before. This is the general form of
entering and displaying symbols. The double quotes around the contents of a sym-
bol can be elided if the contents are a valid name, simple or compound. For in-
stance, ̀xyz and ̀ "xyz" have the same meaning and both are valid for entry,
but ̀ xyz will be displayed in either case:

  `xyz   `"xyz"
`xyz `xyz

We now have the second solution to the problem from the last section, and this one
leaves no unresolved issues. Namely, ` $ c converts the list of character strings c
to a list of symbols, and therefore c[< ` $ c] sorts c alphabetically.

The dyadic function Form/Format is like a dyadic atom function, in that a list con-
taining prototypical values and format specifications can appear on the left and a
corresponding list on the right, or either the left or right can be an atom.
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CHAPTER 5
OPERATORS AND DEFINED

FUNCTIONS

Each-Right

There are times when you would like to modify the way a function applies to its
arguments without redefining it. One of the best examples is Find, which searches
for its right argument among the items of its left argument (see Find in the previous
chapter). In many cases it is not the right argument itself, but every item of the right
argument, that you want to find among the items of the left. For example, how
would you use Find to look up several names in a master list of names?

  master: ("tom"; "alice"; "mike"; "george"; "mary")
  x: ("mary"; "bill"; "mike")

To look up every item of x in master, the expression master?x will not do, be-
cause it will look up the entire list x in master (and since x is not among the items
of master, the result will be 5). K provides several operators that modify the way
functions apply to their arguments, among them one called Each-Right that is help-
ful in this example.

Each-Right is denoted by /: and like all the operators, applies to the function
immediately to its left. For example, ?/: is the application of Each-Right to Find
that produces a new function called Find-Each-Right. This new function searches
separately for every item of its right argument — not the entire right argument —
among the items of the left argument.

  master ? x
5 the entire x is not found in master
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  master ?/: x
4 5 2 x[0] matches item 4 of master,

x[1] is not found in master, and x[2]
matches item 2

In general for a dyadic function f, the function denoted by f/: and called f-Each-
Right is also a dyadic function; it requires a list for its right argument y, its result
x f/:y  is a list of the same count as y, and for every index i the following relation
holds:

  (x f/: y)[i] matches f[x;y[i]]

That is, the value of the ith item of  x f/:y is identical to f applied to x and the ith
item of y. A function produced by applying an operator to another function, as in
f/:,  is called a derived function.

Each-Left

Analogously, there is Each-Left, which is denoted by \: and has the same effect on
the left argument of its derived functions as Each-Right has on right arguments. For
example, the library function _in is a search function like Find, but searches for
its entire left argument among the items of its right argument and produces 1 if it is
found, and 0 otherwise. The operator Each-Left can be applied to _in,  as in _in\:
or In-Each-Left, to search for each item of the left argument among the items of the
right. Repeating the above Find example for _in:

  x _in master
0 the entire x is not found in master
  x _in\: master
1 0 1 items x[0] and x[2] are each found

in master, but x[1] is not

Each and Monadic Case

Each-Right applies the function it modifies to the left argument paired with every
item of the right argument, and Each-Left similar. As you might guess from the title
of this section, the third operator in this group, called Each, applies the function it



K User Manual 5: Operators and Defined Functions 67

modifies to every item of the left argument paired with every item of the right.
Each is denoted by the single quote '. For example, here are lists of various counts
and contents created by Take-Each (i.e., #:):

  3 5 4 #' (1 2; "abcd"; `a `b `c `d `e `f)
(1 2 1 this is 3#1 2
 "abcda" this is 5#"abcd"
 `a `b `c `d) this is 4#`a`b`c`d`e`f

Note that like a dyadic atomic function, an atom can be used in either argument of
a dyadic function derived from Each, as in:

  5 #' (1 2;"abcd"; `a `b `c `d `e)
(1 2 1 2 1
 "abcda"
 `a `b `c `d `e)

Each-Left and Each-Right only apply to dyadic functions because their definitions
require two arguments. The Each operator, however, is different. It applies just as
well to monadic functions, where its meaning is to apply the function it modifies to
every item in its argument. Before we give examples, there is one thing you must
know, which we will come back to later for an explanation. Whenever an operator
is applied to the monadic function denoted by a symbol, the symbol must first be
modified by a colon. For example, # denotes both monadic Count and dyadic Take.
The symbols #' denote Take-Each, not Count-Each. Count-Each is denoted by
#:'.  For example, if we try to use #' for Count-Each in order to get the count of
each item in master, the following occurs:

  #' master
term: valence error

A valence error message appears, meaning that an attempt was made to use a func-
tion — in this case #'— with the wrong number of arguments. (See the chapter
Programming Environment for the meaning of error messages). The point is that
#' is only Take-Each, not both Take-Each and Count-Each. The colon is needed to
denote Count-Each:

  #:' master
3 5 4 6 4
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Remember the problem of alphabetically sorting the list c of last names from the
list customers in the sample application (see Grade Up and Grade Down in the
last chapter)? One solution required padding the names with blanks in order to
make them all the same length, and we used -9 $ c, where $ denotes Format.
That solution is very specialized, working only for character strings to be padded
with blanks. What if for some reason we wanted to pad with asterisks?  Or pad a
numeric list with 0’s?  Here is an (almost) general solution. Since 9 is the maxi-
mum length of the strings in c, the items of  9-#:'c  give the amount of padding
required for each string:

  n: 9 - #:'c n is 9 minus the Count-Each of c
4 3 6 4 4 1 0 4 3 2

We will pad with the * character for the visual effect. The padding, and then the
padded names are:

  pad: n #' "*" pad is n Take-Each "*"
("****";"***";"******";"****";"****";,"*";();"****";"***";"**")
  c ,' pad Join c and pad item-by-item
("Jones****"
 "Thomas***"
 "Roe******"
 "Layne****"
 "Irwin****"
 "Marshall*"
 "Blackwell"
 "Rowan****"
 "Rogers***"
 "Crosley**")

There is still the question of finding the maximum value in the list of counts #:'c.

A Note on Syntax

You may have noticed that you are generally free to have extra blanks between
function symbols and their arguments or between items of a list, but you cannot
have blanks between the symbols for an operator and the function it modifies. For
example, #\: is correct syntax but  # \: will result in a parse error.
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  3 5 4 # \: "abc"
           ^ note the ^ pointing to the source of the error
term: parse error

Definition of Non-Primitive Functions

K programs are non-primitive functions, i.e. functions that are not denoted by sym-
bols. More often they are called user-defined functions, and even more often de-
fined functions for short. A non-primitive function definition consists of a sequence
of expressions separated by semicolons and surrounded by braces. The individual
expressions in a function definition are executed from left to right, i.e. starting with
one nearest the left brace, and the result of the one nearest the right brace is by
default also the result of the function. A non-primitive function can have any num-
ber of arguments, including zero. The arguments are specified with bracket-semi-
colon syntax that comes between the left brace at the beginning of the definition
and first expression. This syntax mimics the way non-primitive functions are evalu-
ated, with the argument names replaced by corresponding values. For example, the
following function definition produces the list of padded names in the example
near the end of the last section, when applied to the arguments c for nl, 9 for max,
and "*" for fill:

  {[nl;max;fill] n:max - #:' nl;pad:n #' fill;nl ,' pad}

Function definitions can be broken into more than one line. Each break must occur
at a semicolon and can either be at an expression separator like those above or
within an expression, as we have seen previously. They must occur at semicolons
and the semicolons at the breaks should be elided. For example:

  {[nl; max; fill] n: max - #:' nl
                   pad: n #' fill
                   nl ,' pad}

is equivalent to the first form. This is convenient for large functions, but for small
ones like this one there are other ways to reduce their sizes, and at the same time
make them more readable.

First of all, we can cut this definition down by using single letter names, and even
further by using x, y, and z as the argument names because the bracket-semicolon
argument specification can be elided in the following cases: for functions with no



70

arguments; for functions with one argument if its name is x; for functions with two
arguments named x and y; and for three arguments named x, y and z. This function
has three arguments, so we’ll use x for nl, y for max, and z for fill (x must be
the first argument, y the second, and z the third):

  {n: y - #:' x; pad: n #' z; x ,' pad}

The use of the names n and pad, which are local to the function definition, are of
little value because they are used only once — their definitions could be used in
their place just as well. The definition now becomes:

  {x ,' (y - #:' x) #' z}

(This is a good example to try reading from the left. Sometimes this process is
aided by first replacing the symbols with names, as in {x Join-Each (y Minus Count-
Each x) Take-Each z}.

Function definitions are ordinary data, the same as string vectors and integer at-
oms, and do not need to have names. For instance, this definition can be applied
with the variables in the previous section as arguments without giving it a name:

  {x ,' (y - #:' x) #' z}[c; 9; "*"]

(The display of the result, which can be found near the end of the previous section
Each and Monadic Case, has been omitted.)

Of course, if the function is to be used more than once, or if there are readability
issues with long definitions, it may be convenient to give it a name and call it with
that name, as in:

  pd:{x ,' (y - #:' x) #' z} this is ordinary assignment
  pd[c; 9; "*"] execute the function

(Once again, the display of the result has been omitted.)

Operators apply to function definitions in the same way as to primitive functions,
and this provides us with further opportunity to simplify this definition. Namely,
instead of applying Each to the various primitive functions within the definition,
apply Each directly to a simpler function definition that pads only a single charac-
ter string, not every character string in a list. For instance, the function:

  {x , (y - #x) # z}
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pads a single character string, as in:

  {x , (y - #x) # z}[c[3]; 9; "*"]
"Layne****"

and therefore:

  {x , (y - #x) # z}'

pads every character string in a list. That is:

  {x , (y - #x) # z}'[c; 9; "*"]

produces the same list of padded character strings as the previous expressions. One
thing we see from this expression is that Each can be applied to functions of any
number of arguments, not just one or two. The arguments can be atoms or lists, but
if two or more are lists they must have the same length. For example, there are ten
names in c, and they could be padded with different characters as follows:

  { x , (y - #x) # z}'[c; 9; "*.-_:*.-_:"]
("Jones****"
 "Thomas..."
 "Roe���"
 "Layne____"
 "Irwin::::"
 "Marshall*"
 "Blackwell"
 "Rowan��"
 "Rogers___"
 "Crosley::")

As for giving this function a name, either the new function definition without the
application of Each can be given a name and then applied with Each, as in:

  pd1:{x , (y - #x) # z}
  pd1'[c; 9; "*"]

or the derived function can be given a name and applied:

  pdAlt: {x , (y - #x) # z}'
  pdAlt[c; 9; "*"]
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In the next section we see how to compute the maximum string length 9 from c.

There is one thing to be careful about with function definitions. If you define a
function that spans several lines and is supposed to have a result, be sure that the
right brace is on the end of the last line and not on a separate line by itself. Other-
wise, the function has a nil result — in effect no result —, which is not we want in
this case. For example, if the definition at the beginning of this section had been:

  {[nl; max; fill] n: max - #:' nl
                   pad: n #' fill; nl ,' pad
  }

where the right brace is now on a separate line, the result would be the empty
expression to the left of the closing right brace.

Over and Scan

Consider the following problem: the library function _dv is a dyadic function that
deletes all occurrences of its right argument from the items of its left argument. For
example:

  1 3 9 -2 3 7 4 -2 3 9 _dv 3
1 9 -2 7 4 -2 9

The question is: is there a way to use _dv to remove more than one value, say both
3 and -2, in this example?  Offhand you might try Each-Right:

  1 3 9 -2 3 7 4 -2 3 9 _dv/: 3 -2
(1 9 -2 7 4 -2 9
 1 3 9 3 7 4 3 9)

The result is two copies of the left argument, one with the value 3 removed, and the
other with -2 removed. However, what we want is one copy with both values re-
moved. Each-Right is a parallel operator, in that it applies independently to the
items of the right argument paired with the left argument. What we want, in effect,
is an iteration operator that accumulates successive applications of _dv in one
result. There is such an operator, which is called Over and is denoted by /. Using
Over instead of Each-Right in the above example yields:

  1 3 9 -2 3 7 4 -2 3 9 _dv/ 3 -2
1 9 7 4 9
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The way Over works is like this. Think of the left argument as the initial state of the
final result. Over first applies_dv to this initial state and the first item of its right
argument. The result of that evaluation is an intermediate state of the result, which
is:

  1 3 9 -2 3 7 4 -2 3 9 _dv 3
1 9 -2 7 4 -2 9

Over then applies_dv to this intermediate state and the second item of the right
argument, yielding:

  1 9 -2 7 4 -2 9 _dv -2
1 9 7 4 9

In this example the right argument has only two items, so the result of the second
evaluation is the result of the expression. If the right argument had more than two
items, the result of the second evaluation would be the new intermediate state and
_dv would be applied to it and the third item, and so on.

There is a companion operator to Over called Scan, which is denoted by \. The
definition of Scan is essentially the same as Over, except that its results are lists
holding all the intermediate states and the result of the corresponding application
of Over. Repeating the above example for Scan:

  1 3 9 -2 3 7 4 -2 3 _dv\ 3 -2
(1 3 9 -2 3 7 4 -2 3 the initial state matches the left argument
 1 9 -2 7 4 -2 3 has been removed from the previous state
 1 9 7 4) -2 has been removed from the previous state

Scan has uses in its own right, but it is also helpful in understanding applications of
Over because you see the eventual result as it develops.

Over and Scan control iterative processes, but it is not always necessary to think in
terms of the precise way their results are created. For example, the dyadic function
+/, called Plus-Over, adds each item of its right argument to an accumulating sum
that starts with its left argument, as in:

  0 +/ 1 3 5 7   0 +\ 1 3 5 7
16 0 1 4 9 16

The Over evaluation is actually equivalent to:
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  (((0 + 1) + 3) + 5) + 7
16

but the way the sum is accumulated doesn’t matter; 0 + 1 + 3 + 5 + 7 would do
just as well. Consequently, we simply say that  0 +/ x  is the sum of the items
of x and  0 +\ x  is a list of partial sums.

Of course the left argument can be any numeric list that conforms with the right
argument, not just 0.

As in the case of Each, Each-Left and Each-Right, a function produced by applying
either Over or Scan to another function is called a derived function. Over and Scan
applied to dyadic functions are special because there are two derived functions,
one monadic and one dyadic, much like there are two functions represented by the
symbol - . So far we have demonstrated only dyadic derived functions. In the
monadic case, where there is no left argument, the initial state is then taken to be
the first item of the right argument, and the first iterative step applies the function
to this initial state and the second item of the right argument. For example:

  +/ 1 3 5 7   +\ 1 3 5 7
16 1 4 9 16

This is the simplest form of Over and Scan. Summing is a common task, and  +/ is
a common phase in K; over time you may find yourself using this expression with-
out thinking in terms of Over. Here is a little quiz:  What well-known function  is
expressed by {(+/x)%#x}, where the argument is an integer vector, floating-
point vector, or other simple numeric list?

The results of any dyadic function derived from Over or Scan can be produced by
its companion monadic function. Repeating the first example in this section:

  _dv/ (, 1 3 9 -2 3 7 4 -2 3) , 3 -2
1 9 7 4

That is, for any dyadic function f , the dyadic expression  x f/y  is equivalent to
the monadic expression  f/(, x),y .
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Greatest and Least

The applications of Over to Max and Min, the dyadic functions denoted by | and
&, are also among the most common uses of this operator. The result of |/v for an
integer vector or floating-point vector v is the value of the greatest item in v,
while &/v is the least. For example:

  |/ 1 -2.3 5 10 -5 6   &/ 1 -2.3 5 10 -5 6
10.0 -5.0

It might be helpful to step through these examples. In the case of Greatest, the one
on the left, the initial state of the result is 1. Let’s refer to the developing result as r.
The first evaluation is r|-2.3, which is 1 and leaves r unchanged. Then r|5 is
evaluated and r becomes 5; then r|10 is evaluated and r becomes 10; then r|-5
is evaluated and r remains unchanged; and finally the evaluation of r|6 also leaves
r unchanged, so the final result is 10 (actually, 10.0 because the argument is a
floating-point vector). The result of Least can be analyzed in the same way.

At the end of the section Definition of Non-Primitive Functions, we had completed
our solution of padding each character string in a list so that in the result they all
had the same length, except for one thing; we had no expression to compute the
length of the largest string in the original list. Now we do. It is:

  |/ #c
9

Some and All

Early in the tour (the section Familiar Functions on Somewhat Familiar Symbols)
we noted that when Max is restricted to boolean arguments it is equivalent to Logi-
cal Or, and Min is equivalent to Logical And when similarly restricted. What
about |/ and &/ when restricted to boolean arguments?  Under this restriction
|/v is 1 if there is at least one 1 in v and &/v is 0 if there is at least one 0 in v (just
think in terms of Max and Min, and the fact that the largest and smallest boolean
values are 1 and 0).

A list of boolean values often represents the result of testing a list of conditions for
True and False. For this representation, to say |/v is 1 — and therefore at least one
item in v is 1 — now means that some of the conditions are true. Similarly, to say
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&/v is 0 means some of the conditions are false, or equivalently &/v is 1 only if all
the conditions are true. Consequently |/ is called Some when applied to boolean
lists and &/ is called All.

At the end of the section Atom, Count and Shape in the chapter More Primitive
Functions, we used the following expression to test whether or not any item of
1 -12 5 6  is greater than 10:

  0 < # & 10 < 1 -12 5 6
0

The test goes like this; by applying Where (monadic &) to the expression
10 < 1 -12 5 6  we get an integer list holding the index of every item in the
expression with value 1, or true. Consequently, if the count of this integer list is
greater than 0 it must contain at least one item, and therefore at least one item of
1 -12 5 6  must be greater than 10. A more efficient and straightforward test is
simply whether some of  10 < 1 -12 5 6  are true:

  |/ 10 < 1 -12 5 6
0
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APPENDIX A

K ON UNIX

A K process is started in Unix with a K command, which in its simplest form is:

k

The command can also specify a script to be loaded, which will be done immedi-
ately after K is initialized and is the way applications are started.  All scripts have
the extension “.k”, but the extension need not be included in the command. For
example, if the name of the script is prices.k then the command

k prices

will cause a K process to start up and immediately load the script prices.k.

If interprocess communications are to be used then it may be necessary to specify a
communication port number in the startup command by which other K processes
identify this one. This number is a four-digit integer with values greater than 1000,
although your Unix system may hold some numbers in this range reserved. The
port number parameter is -i.  For example:

k prices -i 1234

will give the prices application the communication port number 1234. Port num-
bers need only be specified for server processes. If the -i option is used, it must be
after the load script, if the latter is present. Command line parameters occurring
after the port number and load script are optional, and are accessible from within
the K session as a string list, via _i.
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Normally a K session permits keyboard input, but some applications, in particular
end-user applications, need to disallow it. For that purpose the K command that
started the application should be followed by  </dev/null to its right, as in:

k prices -i 1234 </dev/null

This K process cannot receive keyboard input, but any screen objects the applica-
tion creates will be active, as well as interprocess communications.

The fonts used for screen displays are specified in Unix by the environment vari-
ables KFONT and KLFONT. The font named in KFONT is for data and should be
monospaced; the one named in KLFONT is for labels and its point size should not
exceed that of the font used for data. The default values are:

KFONT *courier-medium-r*�14*
KLFONT *helvetica-bold-r*�12*

Any fonts named in the output of the Unix command xlsfonts can be used. For
application portability it is best to specify only the font name and size, and use the
wild card * where minor variations in the fonts are acceptable, as in the above
default specifications. See the X Windows documentation for a discussion of the
font description format.

It is possible to adjust the colors used by the display hardware to show K data
objects, using the KCOLOR environment variable. The default is black, white, and
a light gray:

KCOLOR 0 -1 808080

These values refer to the foreground, background, and panel midground. See the K
Reference Manual for a description of the color codes.

K manages its own storage for data objects. This backing store is comprised of
files created and maintained by K, which are located in the directory designated by
the environment variable KSWAP. If this variable is not set, then /var/ktmp is
used. For performance reasons the designated directory should be on the local disk
of the workstation, and there must be sufficient storage available in the directory,
i.e. at least 500 megabytes. If your installation provides a more appropriate direc-
tory with these characteristics, set the environment variable KSWAP to the name
of that directory before entering K.
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APPENDIX B

K ON WINDOWS

The Windows version of K is designed to run under Microsoft Windows NT 4.0
and most features are also functional in Windows 95. In both cases, the working
environment is largely similar to that of K on Unix. Some K characteristics have
been augmented and others added in order to take advantage of features available
in Windows.

There are actually two K programs (.exe files), both of which use the same K
dynamic load library (.dll file). The first, named simply k, is for developers,
while the second, kr or  “K runtime”, is intended for end application users. This
latter version does not provide the K console familiar to developers. The current
discussion focuses on the main console program.

Running K

K may be executed in several different ways. The traditional method involves typ-
ing in a command shell’s console:

k

The command shell would probably be command  (more common on Windows 95)
or cmd (a more powerful shell, usually available only in Windows NT). Certain
versions of the emacs editor are also supported. In this scenario, K takes over the
console until the session is terminated. Alternatively, the user can simply click on
an icon representing the K program. In this case, a brand new console is created,
which lasts until the end of the K session.
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K is also started up when an icon is dragged and dropped onto the K icon. In this
case, the file represented by the first icon is taken to be the first argument to a K
session (which would imply that the file is a K script; see below). Finally, a K
session is started if the OS registry has been configured to execute K when K scripts
are opened. End users would have kr set up to run this way.

One or more arguments may be provided on the command line, or installed as
implicit arguments via the system registry (e.g., for use in opening K scripts). The
first argument to a K session is the name of a file to be loaded as a K script (.k
suffix). One may also use the -i option to specify a port number, when the K
session is intended to act as a server process, or the -h option for an http port.
Following arguments may be any number of valid strings, which are accessed within
the K session via the _i pseudo-function. For example, the following command:

k prices -i 408 34 67 date "15 July 1997"

results in the script  prices.k  being loaded, the session becomes a server pro-
cess available at TCP/IP port 408, and _i has the value of the string list
("34";"67";"date";"15 July 1997"). Loading multiple scripts must
be done by including \l commands in one main script.

One cannot redirect stdin in K on Windows; run-time license operability is pro-
vided by the companion program, kr. However, both stdout and stderr are redirectable
where the command shell permits this. For example:

k -i 408 2> logfile.txt

will cause all stderr output to be redirected to the file logfile.txt.

Environment and Nonstandard Commands

The k user can use several commands which duplicate the functionality of com-
mand line options and environment variables. The nonstandard options are all avail-
able via the command \m. They are:

(0) \m - list available nonstandard commands

(1) \m i - set the server port number within a K session (e.g. \m i 1234)

(2) \m h - set the http port number

(3) \m c - set the KCOLOR variable (e.g. \m c 0 -1 009999)
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(4) \m f - set the KFONT variable (e.g. \m f Courier New-8)

(5) \m l - set the KLFONT variable (e.g. \m l Helvetica-7)

The latter three \m commands that affect K environment variables KCOLOR,
KFONT and KLFONT are relevant to K visual displays, and are only effective if
executed before the first instantiation (`show$) of a K data object. These vari-
ables can also be set outside the K session in the standard way:

> set KCOLOR="1 -1 656565"
> set KFONT="Courier-9"
> set KLFONT="Arial-bold-8"

The double-quote characters are optional in most command shells. Within a K
session, they should be avoided.

The specification of fonts is similar to the method used in X Windows, in order to
increase portability of k scripts. (However, note that the font family names under
Windows NT are likely to be different.) In a specification such as those in the
examples above, one must provide the font family name (e.g., Arial, or Courier
New). Other characteristics are delimited by the - and * characters, and may in-
clude pointsize (an integer), an italics flag (i or italic), and a density (one of thin,
extralight, light, normal, medium, semibold, bold, extrabold, or heavy). The de-
fault fonts are the fixed width and proportional width defaults provided by the
Windows OS.

Colors used in the K graphical user interface are specified in the same way as on
Unix, using KCOLOR (see K on Unix). Note that if a Windows display screen is
limited to 256 colors, only the 20 “system” colors are available to the K GUI. If
more flexibility is required, the display settings should be adjusted so that 16 bits
or more are available to each screen pixel.

Error Behavior

In the K working environment, errors may arise from console commands, from
interprocess communication, or from K graphical objects. They are reported to the
user via the graphical interface or the console, depending on various conditions.
Entry into data widgets of badly typed data will result in that k widget assuming the
title “Error”. This type of error may be cleared by pressing the escape key.
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If the Error Flag \e is set to 1 in a session, all other types of errors are reported to
the console. If \e is 0, the errors are reported to the console if they originate at the
console and there are no K widgets associated with the session. Otherwise, errors
are reported via the k “Error” widget in the GUI; see below.

When \e is set to 1 and an error occurs, user input is required while the session is
in suspended mode.  \e is 0 by default in kr.

When the K error widget comes up in the screen display (because an error has
occurred and \e is 0), it displays an error message. Until the user deactivates the
error window by clicking with the mouse, all K widgets belonging to that particular
K session are suspended. Input and output to the console are also suspended, though
the console can still be manipulated (moved, iconified and so on) in the desktop.
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INDEX

Symbols

! monad  57
# dyad  56
# monad  53
$ dyad  62, 63
$ monad  62
%  19
& dyad  19
& monad  25, 55
&/  76
'  67
* dyad  12
+ dyad  12
+/  73
,  20
- dyad  12
- monad  13
-h option  80
-i option  77, 80
..  44
.a attribute  45
.c attribute  45
.k file  33, 77, 80
.l attribute  45
/  72
/:  65
:  22
< dyad  12
< monad  59
= dyad  12

> dyad  12
> monad  59
? dyad  58
?/:  65
@ monad  53
[]:  42
\ command  9
\ operator  73
\:  66
\\  5, 12
\d  35
\e  7, 82
\l  33, 37, 80
\m command  80
\v  36
^ dyad  19
^ monad  53
_  20
_dv  72
_i variable  77, 80
_in  66
`button class  46
`data class  46
`form class  46
`hide  33
`show  32
|  19
|/  76
~ dyad  57
~ monad  13
1: dyad  32

1: monad  33

A

abort command  9
absolute name  35, 38
addition  12
All  76
ancestor  35
annotation  6
APL  12
append  20
application  5

end-user  78
sample  29

argument name  69
arithmetic  12
arrangement  46
Assignment  22
assignment

directory  42
ATM example  30
Atom  53
atom  6, 13
atomic function  17
attribute  44.See also .a, .bg

etc.
inheritance  45
reserved  44

attribute dictionary  43



84

B

back-quote
denoting symbol  13

blank. See also space
where permitted  68

boolean  12, 19, 57, 66, 75
list  25, 55

brace character  69
bracket form  22, 69
button class  46

C

C language  11
caret

indicating error  8
change directory command  36
character list  7
clear

suspension  8
colon  22

symbol modification  67
color  78, 81
command  5, 29

startup  34
command line  80
communication

interprocess  34
communication port  34, 77
compound name  34
conditional evaluation  11
conform  17

in indexing  24
console  34, 79, 81
constant  22
control statement  11
corresponding items  18
Count  53
cross-sectional indexing  39
current directory  35
cursor  5, 7
cyclic  56

D

data class  46
data font  78
data object  32, 34, 78
data type  13

dictionary  40
error  7

database  33
debug  7
default argument names  69
default color  78
default directory  35
default display class  46
default font  78, 81
defined function  69
derived function  66
descendent  35
dictionary  40
directory  29

current  35
default  35
entry  35
index  40
root  34
top-level  30
working  35

display
class  44
of lists and vectors  17

display directory command  35
Divide  19
Do  11
dot

attribute directory  44
make dictionary  43

double-quote  81
dyadic function  13, 74
dynamic load library  79

E

Each  66, 71
Each-Left  66
Each-Right  65

emacs  79
empty expression  72
end-user application  78, 79
Enlist  20
entry  35
Enumerate  57
environment  5
environment variable  78
Equal  12
error  7, 81
Error Flag  8, 82
escape key  81
evaluation  5
evaluation order  26
execution  69

of an expression  7
resume  8

exit  5
exponential format  13
exponentiation  19
expression  5, 6

incomplete  8
mathematical  26

extension  77

F

false  12
file  78

.exe and .dll  79
file extension  33, 77
file I/O  11
file read  34
file write  32
Find  58, 65
Find-Each-Right  65
floating-point

number  13
vector  31

Floor  20
font  6, 78, 81
Form  63
form class  46
Format  62
function
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derived  66
non-primitive  69

G

global variable  30
Grade Down  59
Grade Up  59
graphical user interface.See

GUI
greatest  75
GUI  11, 81, 82

H

hide  33
hierarchy  34
homogeneous list  15
horizontal display  49
http  80

I

icon  79
If  11
immediate left rule  13, 22
In-Each-Left  66
incomplete expression  8
indent  5
index  22

assignment  24, 40
blank/empty  39
cross-sectional  39
directory  40

index error  8
integer list  7
interactive  5
interprocess communication

11, 34, 77
item-matching rule  17
items at depth  38
iteration  73

J

Join  20

K

K console  79
K language  5, 11
K name space  34
K process  35, 77
K program  5
K Reference Manual  8, 78
K runtime  79
K script  80
K session  35
K-tree  34
KCOLOR  78, 81
KFONT  78, 81
KLFONT  78, 81
KSWAP  78

L

label attribute  48
language

K  11
layout  46
Least  75
least common multiple  18
left justification  62
left-to-right  25, 69
length  53
Less  12
list  6, 11, 13

constructor  20, 56
entries of directory  36
floating-point  14
index  25
length/count  53
numeric  14, 17
one-item  21
simple  16

load  5, 33, 37, 77
Logical And  19
logical negation  13
Logical Or  19
long right scope  27

M

Match  57
matrix  54
Max  19, 75
Microsoft Windows  79
Min  19, 75
Minus  12
monad

enforce with colon  67
monadic function  13, 74
monospace font  78
More  12
multiplication  12

N

name space  34
Negate  13
nil  15, 22, 72
non-primitive function  69
nonstandard command  80
Not  13
NT  79
number  6
numeric list  7, 14, 17
numeric vector  17

O

object edit  32
one-item list  14, 21
operator.See adverb
operator precedence  26
order

in indexing  25
of evaluation  26

Over  72

P

pairing  17
parent directory  35
parentheses  26

closing  9
parse error  68
path  35
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Plus  12
Plus-Over  73
port  34, 77, 80
Power  19
precedence  26
primitive function  11
programming environment  5
prompt  8

Q

quote  67

R

read file  34
Reciprocal  19
rectilinearity  53
redirection  80
Reference Manual.See K

Reference Manual
registry  80
relational function  12
relative name  35
replication  56
result

function  69
right-to-left evaluation  26
root directory  34
rounding  20

S

scalability  29
Scan  73
scope

long right  27
screen  81
screen display  32, 78
script  5, 77, 80
script file  33
search  58
selection-at-depth  39
selection-by-index  22
self-describing data objects  53
server  34, 77, 80

Shape  53
shell  34, 79
show  32, 81
simple list  16
simple name  34
Some  76
sort  58

of strings  61
of symbols  60

sorting function  59
space  7, 14

where permitted  68
spreadsheet  42
startup  77
startup command  34
state

computation  7
statement  5
stdout and stderr  80
storage  78
string  16
subdirectory  31
subtraction  12
suspension  7, 82
symbol  11, 13

as index  40
general form  64

syntax  68

T

Take  56
TCP/IP  80
terminology  15
text file  5
Times  12
toolkit  5
top-level directory  30
top-level object  35
top-to-bottom execution  33
transaction  30
tree  34
true  12
type error  8

U

Unix  77
user-defined function  69

V

valence  67
variable  22
vector  15

numeric  17
of indices  59

vertical display  46
visual display  81
visual object  32

W

Where  25, 55
While  11
wild card  78
Windows  79
working directory  30, 35, 45
write to file  32

X

xlsfonts  78
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